博碩士論文 955403006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.136.26.156
姓名 包偉丞(Wei-chen Pao)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 正交分頻多工系統之低複雜度功率配置演算法
(Reduced Complexity Power Allocation Methods for OFDM-based Systems)
相關論文
★ 利用手持式手機工具優化行動網路系統於特殊型活動環境★ 穿戴裝置動態軌跡曲線演算法設計
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 股票開盤價漲跌預測
★ 感知無線電異質網路下以不完美頻譜偵測進行資源配置之探討★ 大數量且有限天線之多輸入多輸出系統效能分析
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 應用於3GPP WCDMA-FDD上傳鏈路系統的遞迴最小平方波束合成犛耙式接收機
★ 調適性遠時程瑞雷衰退通道預測演算法設計與性能比較★ 智慧型天線之複合式到達方位-時間延遲估測演算法及Geo-location應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文針對以正交分頻多工為基礎之系統,提出使用者的功率配置演算法讓傳輸率最大化。一般而言,此最佳化問題可以轉換成注水問題(Waterfilling Problem),論文中,利用Lagrange乘數法發展出此功率配置問題之最佳演算法,而可利用Bisection與Subgradient方法求得最佳注水高度(Waterfilling Level),注水高度與配置給子載波的功率有關,然而最佳注水高度是由持續地疊代更新所求得,由於大量的反覆更新,需要花費相當的計算時間以得到最佳解,所配置的功率總和才會等於總功率限制,為了減少計算時間與負擔,本論文提出及介紹了多種低複雜度功率配置演算法。
最簡單的方法為將功率平均地配置給所有子載波,由於不需要選擇子載波,且所有子載波都有相同功率,可知此方法的複雜度會非常低,且從相關文獻得知,此方法在此問題下,相對於最佳解會有不錯的成果,然而由最佳解得知,並非所有子載波都應該配置功率,此外,通道狀況越好的子載波要配置更多功率,應該透過子載波選擇後,再配置相等或不等的功率,才能有更好的傳輸率,因此本論文利用了此概念,提出了低複雜度功率配置演算法。
第一種功率配置方法,利用了”通道狀況越好的子載波,則配置越多功率”的概念,在此利用透過對偶間隙(Duality Gap)的觀察與分析,而設計了快速功率配置方法,也同時提供功率調整參數分析,並提供了參數設定範圍,在此建議範圍內,只需少量的疊代配置功率後,所提出的快速功率配置方法,即能得到近乎最佳解。
第二種功率配置方法,利用了”透過子載波選擇後,平均配置功率”的概念,也就是說,部分子載波不配置功率,總功率平均地分配給剩餘的子載波,因此如何有效率地選擇可配置功率的子載波會直接影響傳輸率,在本論文提供了”直接搜尋(Direct Search)”、”不等式條件(Inequality Criterion)”、以及” 平均運算(Averaging Operation)”,三類不同的選擇子載波配置功率的方法。
本論文則對以正交分頻多工為基礎之多載波通訊系統,設計功率配置演算法,由於不同的通訊系統有不同問題形式與限制條件,因此要考慮其差異性,設計出適合的低複雜度功率配置演算法,以下則是各章節的介紹:
第二章針對正交分頻多工系統,透過對偶間隙(Duality Gap)的觀察與分析,而設計快速功率配置方法,也同時提供功率調整參數的分析;當考慮以正交分頻多工為基礎之感知無線電網路系統時,相互干擾訊號則必須考慮在功率配置問題中,第三章則針對此感知無線電網路,設計出能同時考慮通道增益與相互干擾的功率配置方法;第四章為單載波多重存取系統之功率配置方法。在本論文中,亦考慮了單載波多重存取系統的子載波配置,藉由實驗觀察與分析,可知使用者在擁有特定數量的子載波時,可以有最大化的傳輸速率,因此在第五章即是利用此現象,設計出低複雜度的子載波配置方法,也可再利用疊代式方法增進整體傳輸率。
摘要(英) This dissertation presents the solutions to the power allocation problems for orthogonal frequency division multiplexing (OFDM)-based systems, including cognitive radio (CR) networks and single carrier frequency division multiple access (SC-FDMA) systems. Generally, these optimization problems can be converted into waterfilling problems subject to power constraints. Optimal power allocation methods are developed by utilizing the Lagrange multiplier method. The bisection method and the subgradient-based method are both considered as the solutions to find the optimal waterfilling level which is related to the amount of power allocated to each subcarrier. The amount of power for each subcarrier is different and varied according to the channel gain. The waterfilling algorithm indicates that we should allocate more power to the subcarriers with larger channel gains to enable higher data transmission rates through these subcarriers, and allocates less or even no power to the ones with smaller channel gains. However, the waterfilling level is updated iteratively. It may take intensive computational time to obtain the optimum solutions due to a large number of iterations.
In order to reduce the computational time and load, several reduced complexity power allocation methods are designed for different multicarrier communication systems in the dissertation. The classical suboptimal power allocation strategy is the equal power allocation method which loads the equal amount of power to all subcarriers. It needs very low computational complexity, and has competitive performance compared to that of the optimal solution. In order to improve the performance, the constant power allocation method is presented recently which only loads the equal amount of power to some selected subcarriers. A threshold is searched by different designed algorithms to select subcarriers with power. Varied computational complexities are revealed. Obviously, the performance of the constant power allocation method depends on the threshold.
Power allocation methods presented in the dissertation are developed based the concept of the existing optimal and suboptimal algorithms. The first idea is to design a novel power allocation method to load more power to those subcarriers with high channel gains. Without resorting to the water-level related calculation in the optimal waterfilling algorithm, the proposed method is to adjust the amount of power in each subcarrier directly. By the judicious design, the proposed method achieves the near-optimal solution with a low computational complexity. This method is presented in Chapter 2 for OFDM systems. The other idea is to search thresholds for allocating equal power to some selected subcarriers. The thresholds in the proposed constant power allocation methods are obtained by three different strategies which are presented in Chapter 3-5, including the direct search, the averaging operation, and the inequality criterion. More specific information for each chapter is as follows:
Chapter 2 presents a power allocation strategy for OFDM systems with resorting to the observation and analysis to the duality gap. The analysis for the selection of the power tuning parameter in the proposed strategy is also presented in Chapter 2. The proposed strategy achieves the near-optimal solution in a fast rate. Based on OFDM systems, CR networks are introduced in Chapter 3. The mutual interference should be considered in the system model when developing the power allocation method. A novel ratio parameter to indicate the quality of a subcarrier is used to develop a low complexity and efficient power allocation scheme which can select subcarriers with relatively better channel states and causing the less amount of mutual interference. With an additional discrete Fourier transform (DFT) processing preceding the conventional orthogonal frequency division multiple access (OFDMA) processing, SC-FDMA has drawn great attention in the uplink communications. In Chapter 4, a constant power allocation method by searching a threshold is presented to improve the performance for SC-FDMA systems. Chapter 5 focuses on the subcarrier and power allocation problem of maximizing total achievable rates for multiuser DFT-precoded OFDM uplink systems. Referring to the observation through the trend indicated in the simulations, selecting a specific number of subcarriers for each user would obtain the maximum rate. Based on this property, the proposed scheme is designed to assign subcarriers to users by considering the spectral efficiency enhancement. In additions, an iterative scheme is proposed for improving the performance.
關鍵字(中) ★ 單載波多重存取
★ 功率配置
★ 子載波配置
★ 感知無線電網路
★ 正交分頻多工
★ 正交分頻多重存取
關鍵字(英) ★ Subcarrier Allocation
★ Power Allocation
★ Orthogonal Frequency Division Multiplexing
★ Orthogonal Frequency Division Multiple Access
★ Cognitive Radio
★ Single Carrier Frequency Division Multiple Acces
論文目次 中文摘要 ................................................ i
Abstract .............................................. iii
致謝 ................................................... vi
List of Contents ...................................... vii
List of Figures ........................................ ix
List of Tables ........................................ xii
List of Notations and Symbols ........................ xiii
Chapter 1. Introduction ............................... 01
1.1 General Power Allocation Methods for Resource Allocation Problems ............... 02
1.2 Power Allocation for OFDM Systems .................. 03
1.3 Power Allocation for OFDM-based Cognitive Radio Systems ......................... 05
1.4 Power Allocation for SC-FDMA Systems ............... 07
1.5 Subcarrier and Power Allocation for DFT-precoded OFDMA Uplink Systems ...... 10
1.6 The Approach of The Computational Complexity Comparison ............ 11
1.7 Organization of the Dissertation ................... 12
Chapter 2. Power Allocation for OFDM Systems .......... 13
2.1. System Model and Problem Formulation .............. 14
2.2. Proposed Schemes .................................. 16
2.3. Analysis for The Selection of The Power Tuning Parameter ................... 19
2.4. Simulation Results ................................ 24
Chapter 3. Power Allocation for OFDM-based Cognitive Radio Systems ........... 31
3.1. System Model and Problem Formulation ...............33
3.2. Proposed Schemes .................................. 38
3.3. Simulation Results ................................ 46
Chapter 4. Power Allocation for SC-FDMA Systems ....... 51
4.1. System Model and Problem Formulation .............. 52
4.2. Proposed Schemes .................................. 54
4.3. Simulation Results ................................ 58
Chapter 5. Subcarrier and Power Allocation for DFT-precoded OFDMA Uplink Systems ... 64
5.1. System Model and Problem Formulation .............. 65
5.2. Proposed Schemes .................................. 69
5.3. Iterative Subcarrier Allocation Refining Schemes ... 74
5.4. Simulation Results ................................ 76
Chapter 6. Conclusion .................................. 81
6.1. Future Work ....................................... 83
References ............................................. 85
APPENDIX ............................................... 91
參考文獻 [1] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley and Sons, 1991.
[2] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
[3] A. J. Goldsmith and P. P. Varaiya, “Capacity of fading channels with channel side information,” IEEE Trans. Inf. Theory, vol. 43, no. 6, pp. 1986-1992, Nov. 1997.
[4] G. Bansal, M. J. Hossain, and V. K. Bhargava, “Optimal and suboptimal power allocation scheme for OFDM-based cognitive radio systems,” IEEE Trans. Wireless Commun., vol. 7, no. 11, pp. 4710-4718, Nov. 2008.
[5] O. Kaya and S. Ulukus, “Achieving the capacity region boundary of fading CDMA channels via generalized iterative waterfilling,” IEEE Trans. Wireless Commun., vol. 5, no. 11, pp. 3215-3223, Nov. 2006.
[6] J. Jang and K. B. Lee, “Transmit power adaptation for multiuser OFDM systems,” IEEE J. Sel. Areas Commun., vol. 21, no. 2, pp. 171-178, Feb. 2003.
[7] K. Kim, Y. Han, and S.-L. Kim, “Joint subcarrier and power allocation in uplink OFDMA systems,” IEEE Commun. Letters, vol. 9, no. 6, pp. 526-528, Jun. 2005.
[8] W. Yu and J. M. Cioffi, “Constant-power waterfilling: performance bound and low-complexity implementation,” IEEE Trans. Commun., vol. 54, no. 1, pp. 23-28, Jan. 2006.
[9] M. Lee and S. K. Oh, “A simplified iterative water-filling algorithm with per-iteration power normalization in multiuser MMSE-precoded MIMO systems,” in Proc. IEEE Veh. Tech. Conf.-Spring, pp. 744-748, May 2008.
[10] J. Huang, V. G. Subramanian, R. Agrawal, and R. A. Berry, “Downlink scheduling and resource allocation for OFDM systems,” IEEE Trans. Wireless Commun., vol. 8, no. 1, pp. 288-296, Jan. 2009.
[11] J. Huang, V. G. Subramanian, R. Agrawal, and R. A. Berry, “Joint scheduling and resource allocation in uplink OFDM systems for broadband wireless access networks,” IEEE J. Sel. Areas Commun., vol. 27, no. 2, pp.226-234, Feb. 2009.
[12] J. Lim, “Adaptive radio resource management for uplink wireless networks,” Ph. D dissertation, Polytechnic Univ. New York, 2006.
[13] D. Hughes-Hartogs, “Ensemble modem structure for imperfect transmission media,” U.S. Patents nos. 4679227, July 1987; 4731816, Mar. 1988; and 4833796, May 1989.
[14] E. H. Choi, W. Choi, and B. F. Womack, “An enhanced multimode power loading algorithm applicable to large dimensional OFDM systems,” in Proc. IEEE Military Commun. Conf., pp. 1-5, Nov. 2008.
[15] H. Wu and T. Haustein, ”Radio resource management for the multi-user uplink using DFT-precoded OFDM,” in Proc. IEEE Int. Conf. on Commun., pp. 4724 - 4728, May 2008.
[16] N. Y. Ermolova and B. Makarevitch, “Low complexity adaptive power and subcarrier allocation for OFDMA,” IEEE Trans. Wireless Commun., vol. 6, no. 2, pp. 433-437, Feb. 2007.
[17] N. Wang and S. D. Blostein, “Comparison of CP-based single carrier and OFDM with power allocation,” IEEE Trans. Commun., vol. 53, no. 3, pp. 391-394, Mar. 2005.
[18] A. Pascual-Iserte, A. I. Perez-Neira, and M. A. Lagunas, “On power allocation strategies for maximum signal to noise and interference ratio in an OFDM-MIMO system,” IEEE Trans. Wireless Commun., vol. 3, no. 3, pp. 808-820, May 2004.
[19] S. S. Nam, H.-C. Yang, M.-S. Alouini, and K. A. Qaraqe, “Performance evaluation of threshold-based power allocation algorithms for down-link switched-based parallel scheduling,” IEEE Trans. Wireless Commun., vol. 8, no. 4, pp. 1744-1753, Apr. 2009.
[20] P. Mitran, L. Le, C. Rosenberg, and A. Girard, “Resource allocation for downlink spectrum sharing in cognitive radio networks,” in Proc. IEEE Veh. Tech. Conf.-Fall, pp. 1-5, Sep. 2008.
[21] G. Chung, S. Vishwanath, and C. S. Hwang, “On the limits of interweaved cognitive radios,” in Proc. IEEE Radio and Wireless Symp., pp. 492-495, Jan. 2010.
[22] G. Bansal, Md. J. Hossain, and V. K. Bhargava, “Adaptive power loading for OFDM-based cognitive radio systems,” in Proc. IEEE Int. Conf. on Commun., pp. 5137-5142, Jun. 2007.
[23] D. T. Ngo, C. Tellambura, and H. H. Nguyen, “Resource allocation for OFDM-based cognitive radio multicast networks,” in Proc. IEEE Wireless Commun. and Networking Conf., pp. 1-6, Apr. 2009.
[24] P. Cheng, Z. Zhang, H.-H. Chen and P. Qiu, “Optimal distributed joint frequency, rate and power allocation in cognitive OFDMA systems,” IET Commun., vol. 2, no. 6, pp. 815-826, June 2008.
[25] T. Weiss, J. Hillenbrand, A. Krohn, and F. K. Jondral, “Mutual interference in OFDM-based spectrum pooling systems,” in Proc. IEEE Veh. Tech. Conf.-Spring, vol. 4, pp. 1873-1877, May 2004.
[26] Y. Zhang and C. Leung, “An efficient power-loading scheme for OFDM-based cognitive radio systems,” IEEE Trans. Veh. Tech., vol. 59, no. 4, pp. 1858-1864, May 2010.
[27] T. Lunttila, J. Lindholm, K. Pajukoski, E. Tiirola, and A. Toskala, “EUTRAN uplink performance,” in Proc. IEEE Int. Symp. on Wireless Pervasive Computing, pp. 515-519 Feb. 2007.
[28] B. E. Priyanto, H. Codina, S. Rene, T. B. Sorensen, and P. Mogensen, “Initial performance evaluation of DFT-spread OFDM based SC-FDMA for UTRA LTE uplink,” in Proc. IEEE Veh. Tech. Conf..-Spring, pp. 3175-3179, Apr. 2007.
[29] H. G. Myung, J. Lim, and D. J. Goodman, “Single carrier FDMA for uplink wireless transmission,” IEEE Veh. Tech. Mag., vol. 1, no. 3, pp. 30-38, Sept. 2006.
[30] C. Sritiapetch and S. Sampei, “Co-channel interference suppression scheme employing nulling filter and Turbo equalizer for single-carrier TDMA systems,” IEICE Trans. Commun., vol. E90-B, no. 7, pp. 1857-1860, July 2007.
[31] C. Sritiapetch and S. Sampei, "Frequency domain nulling filter and turbo equalizer in suppression of interference for one-cell reused single-carrier TDMA systems", IEICE Trans. Commun., vol. E92-B, no.6, pp. 2085-2094, June 2009.
[32] P. S. Chow, “Bandwidth optimized digital transmission techniques for spectrally shaped channels with impulse noise,” Ph. D dissertation, Stanford Univ. Stanford, CA, 1993.
[33] C. Y. Wong, C. Y. Tsui, R. S. Cheng, and K. B. Letaief, “A real-time subcarrier allocation scheme for multiple access download OFDM transmission,” in Proc. IEEE Veh. Tech. Conf.-Fall, vol. 2, pp. 1124-1128, Sept. 1999.
[34] Y. F. Chen and J.-W. Chen, “A fast subcarrier, bit, and power allocation algorithm for multiuser OFDM-based systems,” IEEE Trans. Veh. Tech., vol. 57, no. 2, pp.873-881, March 2008.
[35] T. C. H. Alen, A. S. Madhukumar, and F. Chin, “Capacity enhancement of a multi-user OFDM system using dynamic frequency allocation,” IEEE Trans. Broadcast., vol. 49, no. 4, pp. 344-353, Dec. 2003.
[36] H. Zhang and Y. Li, “Clustered OFDM with adaptive antenna arrays for interferences suppression,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 2189-2197, Nov. 2004.
[37] J. Lim, H. G. Myung, K. Oh, and D. J. Goodman, “Channel-dependent scheduling of uplink single carrier FDMA systems,” in Proc. IEEE Veh. Tech. Conf.-Fall, pp. 1-5, Sept. 2006.
[38] L Liu, "Uplink access scheme for LTE-Advanced," IEICE Trans. Commun., vol.E92-B, no.5 May 2009.
[39] NEC, "Proposals on PHY related aspects in LTE Advanced" TSG-RAN1#53, May 2008.
[40] Motorola, “Simulation methodology for EUTRA UL: IFDMA and DFT-spread-OFDMA,” 3GPP TSG-RAN WG1 #43, Technical Document R1-051335, Nov. 2005.
[41] C. Mohanram and S. Bhashyam, “A sub-optimal joint subcarrier and power allocation algoritm for multiuser OFDM,” IEEE Commun. Letters, vol. 9, no. 8, pp. 685-687, Aug. 2005.
[42] Z. Shen, J. G. Andrews, and B. L. Evans, “Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints,” IEEE Trans. Wireless Commun., vol. 4, no. 6, pp. 2726-2737, Nov. 2005.
[43] C. Y. Ng and C. W. Sung, “Low complexity subcarrier and power allocation for utility maximization in uplink OFDMA systems,” IEEE Trans. Wireless Commun., vol. 7, no. 5, pp. 1667-1675, May 2008.
[44] P. Viswanath, D. N. C. Tse, and V. Anantharam, “Asymptotically optimal water-filling in vector multiple-access channels,” IEEE Trans. Inf. Theory, vol. 47, no. 1, pp. 241-267, Jan. 2001.
[45] H.-W. Lee and S. Chong, “Downlink resource allocation in multi-carrier systems: frequency-selective vs. equal power allocation,” IEEE Trans. Wireless Commun., vol. 7, no. 10, pp. 3738-3747, Oct. 2008.
[46] P. S. Chow and J. M. Cioffi. Method and apparatus for adaptive, variable bandwidth high-speed data transmission of a multicarrier signal over digital subscriber lines. U.S. Patent 5,479,447, December 1995.
[47] C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal, vol. 27, pp. 379-423, 623-656, 1948.
[48] G. Caire, G. Taricco, and E. Biglieri, “Optimum power control over fading channels,” IEEE Trans. Inf. Theory, vol. 45, no. 7, pp.1468-1489, Jul. 1999.
[49] R. G. Gallager. Information theory and reliable communication. New York Wiely, 1968
[50] D. Tse and P. Viswanath. Fundamentals of wireless communication. Cambridge University Press, 2005.
[51] H. Moon, “Waterfilling power allocation at high SNR regims,” IEEE Trans. Commum., vol. 59, no. 3, pp. 708-715, March 2011.
[52] L. Dong, G. Xu, and H. Ling, “Prediction of fast fading mobile radio channels in wideband communication systems,” in Proc. IEEE Global Telecommun. Conf., vol. 6, pp. 3287-3291, Nov. 2001.
[53] Federal Communications Commission, “Spectrum Policy Task Force,” Report of Spectrum Efficiency Working Group, Nov. 2002.
[54] J. Mitola and G. Q. Maguire, “Cognitive radio: Making software radios more personal,” IEEE Pers. Commun., vol. 6, no. 4, pp. 13-18, Aug. 1999.
[55] S. Haykin, “Cognitive radio: Brain-empowered wireless communications,” IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 201-220, Feb. 2005.
[56] E. Biglieri, J. Proakis, and S. Shamai, “Fading channels: information-theoretic and communications aspects,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2619-2692, Oct. 1998.
[57] M. Haddad, A. Hayar, and G. E. Oien, “Downlink distributed binary power allocation for cognitive radio networks,” in Proc. IEEE Int. Symp. on Personal, Indoor and Mobile Radio Commun., pp. 1- 5, Sept. 2008.
[58] T. Weiss and F. K. Jondral, “Spectrum pooling: An innovative strategy for the enhancement of spectrum efficiency,” IEEE Commun. Mag., vol. 43, no. 3, pp. S8–S14, Mar. 2004.
[59] P. Mitran, L. Le, C. Rosenberg, and A. Girard, “Resource allocation for downlink spectrum sharing in cognitive radio networks,” in Proc. IEEE Veh. Tech. Conf., pp. 1-5, Sep. 2008.
[60] P. Cheng, Z. Zhang, H.-H. Chen and P. Qiu, “Optimal distributed joint frequency, rate and power allocation in cognitive OFDMA systems,” IET Commun., vol. 2, no. 6, pp. 815-826, June 2008.
[61] Q. Qi, L. B. Milstein, and D. R. Vaman, “Cognitive radio based multi-user resource allocation in mobile ad hoc networks using multi-carrier CDMA modulation,” IEEE J. Sel. Areas Commun., vol. 26, no. 1, pp.70-82, Jan. 2008.
[62] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “A survey on spectrum management in cognitive radio networks,” IEEE Commun. Magzine, vol. 46, no. 4, pp. 40-48, April 2008.
[63] B. Wang and K. J. Ray Liu, “Advances in cognitive radio networks: a survey,” IEEE J. Sel. Topics in Signal Processing, vol. 5, no. 1, pp.5-23, Feb, 2011.
[64] P. Setoodeh, and S. Haykin, “Robust transmit power control for cognitive radio,” Proc. of the IEEE, vol. 97, no. 5, pp. 915-939, May 2009.
[65] A. Attar, M. R. Nakhai, and A. H. Aghvami, “Cognitive radio game for secondary spectrum access problem,” IEEE Trans. Wireless Commun., vol. 8, no. 4, pp. 2121-2131, April 2009.
[66] Y. Rahulamathavan, K. Cumanan, L. Musavian, and S. Lambotharan, “Optimal subcarrier and bit allocation tech niques for cognitive radio networks using integer linear programming,” in Proc. IEEE workshop on Statistical Signal Processing, pp. 293-296, 2009.
[67] A. Attar, O. Holland, M. R. Nakhai, and A. H. Aghvami, “Interference-limited resource allocation for cognitive radio in orthogonal frequency-division multiplexing networks,” IET Commun., vol. 2, no. 6, pp. 806-814, 2008.
[68] H. G. Myung, K. Oh, J. Lim, and D. J. Goodman, “Channel-dependent scheduling of an uplink SC-FDMA system with imperfect channel information,” in Proc. Wireless Commun. and Networking Conf., pp. 1860-1864, March-April 2008.
[69] L. Liu, T. Inoue, K. Koyanagi, and Y. Kakura, "Uplink access scheme for LTE-Advanced" IEICE Trans. Commun.,vol.E92-B, no.5, pp. 1760-1768, May 2009.
[70] M. Patzold, Mobile Fading Channels. New York: Wiley, 2002.
[71] T. S. Rappaport, Wireless Communications Principles and Practice. Prentice-Hall: Upper Saddle River, 2002.
[72] S. Chieochan and E. Hossain, “Adaptive radio resource allocation in OFDMA systems: a survey of the state-of-the-art approaches,” Wireless Commun. and Mobile Computing, vol. 9, no. 4, pp. 513-527, April 2009.
指導教授 陳永芳(Yung-fang Chen) 審核日期 2011-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明