博碩士論文 985203007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:120 、訪客IP:3.141.47.163
姓名 江彥廷(Yan-ting Jiang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於量化失真模型下H.264/SVC空間可調性視訊編碼之品質估測
(Quality Estimation for H.264/SVC Spatial Scalability based on a New Quantization Distortion Model)
相關論文
★ 基於區域權重之衛星影像超解析技術★ 延伸曝光曲線線性特性之調適性高動態範圍影像融合演算法
★ 實現於RISC架構之H.264視訊編碼複雜度控制★ 基於卷積遞迴神經網路之構音異常評估技術
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 基於時序卷積網路之單FMCW雷達應用於非接觸式即時生命特徵監控
★ 視訊隨選網路上的視訊訊務描述與管理★ 基於線性預測編碼及音框基頻週期同步之高品質語音變換技術
★ 基於藉語音再取樣萃取共振峰變化之聲調調整技術★ 即時細緻可調性視訊在無線區域網路下之傳輸效率最佳化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) H.264/SVC可調式視訊編碼(Scalable Video Coding, SVC)是現在最新的可調式視訊編碼標準,它提供了時間可調性(Temporal Scalability)、空間可調性(Spatial Scalability)及品質可調性(Qualitys Scalability)三大工具,且均由一個基礎層(Base Layer)及數個增強層(Enhancement Layer)所構成,其中Base Layer的編碼方式可相容於H.264/AVC,而Enhancement Layer除了可自行做預測與編碼外,亦利用Base Layer之編碼資訊進行預測與編碼,所以其壓縮效率可以比之前的可調式視訊編碼標準來的高。而不同的使用情境需要不同的視訊品質,如裝置解析度大小不同、網路傳輸頻寬有限等,因此如何有效率的提供合適的視訊品質給各種不同使用情境的使用者是一個很重要的議題。
本論文利用層際間預測的概念,經理論分析所得壓縮前預測之殘餘值(Prior-Residual)以及量化參數來建立用於H.264/SVC可調式視訊編碼的量化失真模型,經實驗結果發現,利用提出的失真模型所預估出的編碼失真和實際經過壓縮後所得之編碼失真相比,精確率最高可達到94.98%。
摘要(英) Scalable Video Coding (SVC) provides efficient compression for the video bitstream equipped with various scalable configurations. H.264 scalable extension (H.264/SVC) is the most recent scalable coding standard. It involves state-of-the-art inter-layer prediction to provide higher coding efficiency than previous standards. Moreover, the requirements for the video quality on distinct situations like link conditions or video contents are usually different. Therefore, how to efficiently provide suitable video quality to users under different situations is an important issue.
This work proposes a Quantization-Distortion (Q-D) model for H.264/SVC spatial scalability to estimate video quality before real encoding is performed. We introduce the residual decomposition for three inter-layer prediction types: residual prediction, intra prediction, and motion prediction. The residual can be decomposed to previous distortion and prior-residual that can be estimated before encoding. For single layer, they are distortion of previous frame and difference between two original frames. Then, the distortion can be modeled as a function of quantization step and prior-residual. In simulations, the proposed model can estimate the actual Q-D curves for each inter-layer prediction, and the accuracy of the model is up to 94.98%.
關鍵字(中) ★ 量化失真模型
★ 品質估測
★ 可調式視訊編碼
關鍵字(英) ★ Quantization-Distortion Model
★ H.264
★ Scalable Video Coding
★ Spatial Scalability
★ Quality Estimation
論文目次 摘要 I
致謝 III
目錄 IV
附圖索引 VI
附表索引 VIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 論文架構 2
第二章 H.264/SVC視訊編碼標準介紹 3
2.1 H.264視訊編碼介紹 3
2.2 H.264編碼架構介紹 5
2.2.1 網路提取層 5
2.2.2 視訊編碼層 6
2.2.2.1 畫面間預測(Intra Prediction) 6
2.2.2.2 畫面間預測(Inter Prediction) 9
2.2.2.3 轉換(Transform) 11
2.2.2.4 量化(Quantization) 12
2.2.2.5 去區塊濾波器(Deblocking Filter) 13
2.2.2.6 熵編碼(Entropy Coding) 14
2.3 H.264/SVC可調式視訊編碼介紹 15
2.4 H.264/SVC可調式視訊編碼器架構 17
2.4.1 時間可調性(Temporal Scalability) 18
2.4.2 空間可調性(Spatial Scalability) 19
2.4.2.1 層際間移動預測 (Inter-layer Motion Prediction) 20
2.4.2.2 層際間畫面內預測 (Inter-layer Intra Prediction) 21
2.4.2.3 層際間殘餘值預測 (Inter-layer Residual Prediction) 22
2.4.3 品質可調性(Quality Scalability) 23
第三章 量化失真模型文獻討論與分析 25
3.1 殘餘值(Residual)在頻域上的失真分析 25
3.2 量化失真模型相關文獻討論 26
3.2.1 拉普拉斯(Laplacian)機率分佈之量化失真模型 26
3.2.2 柯西(Cauchy)機率分佈之量化失真模型 27
3.3 考量移動補償預測下之量化失真分析 32
第四章 應用於空間可調性視訊編碼之量化失真模型 34
4.1 H.264單層編碼架構之量化失真模型 35
4.2 層際間移動預測之量化失真模型 36
4.3 層際間畫面內預測之量化失真模型 38
4.4 層際間殘餘值預測之量化失真模型 41
4.5 空間可調性視訊編碼之量化失真模型 44
第五章 實驗結果與討論 45
5.1 層際間移動預測(Inter-Layer Motion Prediction) 45
5.1.1 實驗環境設置 45
5.1.2 層際間移動預測之量化失真模型分析結果 46
5.2 層際間畫面內預測(Inter-Layer Intra Prediction) 51
5.2.1 實驗環境設置 51
5.2.2 層際間畫面內預測之量化失真模型分析結果 52
5.3 層際間殘餘值預測(Inter-Layer Residual Prediction) 57
5.3.1 實驗環境設置 57
5.3.2 層際間殘餘值預測之量化失真模型分析結果 58
第六章 結論與未來展望 64
參考文獻 65
參考文獻 [1] Advanced Video Coding for Generic Audiovisual Services, ITU-T Rec. H.264 and ISO/IEC 14496-10 (MPEG-4 AVC), ITU-T and ISO/IEC JTC 1, Version 1: May 2003, Version 2: May 2004, Version 3: Mar. 2005, Version 4: Sept. 2005, Version 5 and Version 6: June 2006, Version 7: Apr. 2007, Version 8 (including SVC extension): Consented in July 2007.
[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst. Video Tech., vol. 13, no. 7, pp. 560–576, Jul. 2003.
[3] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding extension of the H.264/AVC Standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103–1120, Sep.2007.
[4] A. Segall and G. J. Sullivan, “Spatial Scalability Within the H.264/AVC Scalable Video Coding Extension,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1121–1135, Sep. 2007.
[5] T. Wiegand, G. J. Sullivan, J. Reichel, H. Schwarz, and M. Wien, Joint Draft 11 of SVC Amendment, Joint Video Team, Doc. JVT-X201, Jul.2007.
[6] H. Schwarz, D. Marpe, and T. Wiegand, “Hierarchical B Pictures,” Joint Video Team, Doc. JVT-P014, Jul. 2005.
[7] H. Schwarz, D. Marpe, and T. Wiegand, “Analysis of hierarchical B-pictures and MCTF,” in Proc. ICME, Toronto, ON, Canada, Jul. 2006, pp. 1929–1932.
[8] H. C. Huang, W. H. Peng, T. Chiang, and H. M. Hang, “Advances in the Scalable Amendment of H.264/AVC,” IEEE Communications Magazine, vol. 45, no. 1, pp. 68–77, Jan. 2007.
[9] H. Schwarz and M. Wien, “The Scalable Video Coding Extension of the H.264/AVC Standard,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 135–141, Mar. 2008.
[10] D. S. Turaga, Y. Chen, and J. Caviedes, “No reference PSNR estimation for compressed pictures,” Signal Process. Image Commun., vol. 19, no. 2, pp. 173–184, Sep. 2004.
[11] T. Berger, Rate-Distortion Theory: A Mathematical Basis for Data Compression. Englewood Cliffs, NJ: Prentice-Hall, 1971.
[12] K. Takagi, Y. Takishima, and Y. Nakajima, “A study on rate distortion optimization scheme for JVT coder,” in Proc. SPIE, vol. 5150, 2003, pp. 914–923.
[13] H. Wang and S. Kwong, “A rate-distortion optimization algorithm for rate control in H.264,” in Proc. IEEE ICASSP’07, Apr. 2007, pp. 1149–1152.
[14] N. Kamaci, Y. Altinbasak, and R. M. Mersereau, “Frame bit allocation for the H.264/AVC video coder via Cauchy density-based rate and distortion models,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 8, pp. 994–1006, Aug. 2005.
[15] L. Guo, O. C. Au, M. Ma, Z. Liang, and P. H. W. Wong, “A Novel Analytic Quantization-Distortion Model for Hybrid Video Coding,” Circuits and Systems for Video Technology, IEEE Trans. Circuits Syst. Video Technol., vol.19, no.5, pp.627–641, May 2009.
[16] R. Feghali, F. Speranza, D. Wang, and A. Vincent, “Video quality metric for bit rate control via joint adjustment of quantization and frame rate,” IEEE Trans. on Broadcasting, vol. 53, no. 1, pp. 441–446, Mar. 2007.
[17] Y. Wang, Z. Ma and Y. F. Ou, “Modeling rate and perceptual quality of scalable video as functions of quantization and frame rate and its application in scalable video adaptation,” Packet Video Workshop, 2009. PV 2009. 17th International , pp.1–9, 11-12 May 2009.
[18] Y. F. Ou, Z. Ma, T. Liu and Y. Wang, “Perceptual Quality Assessment of Video Considering Both Frame Rate and Quantization Artifacts,” Circuits and Systems for Video Technology, IEEE Transactions on , vol.21, no.3, pp.286–298, March 2011.
指導教授 張寶基(Pao-chi Chang) 審核日期 2011-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明