博碩士論文 945401006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.144.255.116
姓名 饒敬國(Chin-Kuo Jao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於正交分頻多工通訊系統之多載波調變/解調變器與多輸入輸出解碼器之設計與實現
(Design and Implementation of Multicarrier Modulator/Demodulator and MIMO Detector for OFDM Communication Systems)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 光耦合隔離系統 之接收端晶片電路設計與實現
★ 應用於光耦合隔離系統之發送端雜訊整形 類比轉數位轉換器★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著多媒體應用服務的蓬勃發展以及網際網路與無線通訊的結合,現今的無線通訊系統須具備高傳輸速率的能力以處理日漸增加的資料負載。而高傳輸速率通訊系統所需面對的主要難題是多路徑干擾以及有限的可用傳輸頻寬。為了克服多路徑干擾,調變技術從單載波調變演進到正交分頻多工(OFDM)的多載波調變;為了達到高頻譜效率,天線技術從單輸入單輸出(SISO)的單天線傳輸發展成多輸入多輸出(MIMO)的多天線傳輸。正交分頻多工調變結合多輸入多輸出技術將成為未來通訊系統的發展趨勢。因此本論文分別針對正交分頻多工與多天線技術的關鍵模組–多載波調變/解調變器以及多輸入多輸出解碼器,從演算法到硬體架構層級提出了數個新技術來達到低功耗與高效能的目的。
在正交分頻多工的傳收機設計中,傳統上都是利用快速傅立葉轉換(FFT)處理器做為多載波訊號解調器。由於快速傅立葉轉換的演算法研究發展已發展地相當成熟,欲從演算法層級來減低運算複雜度已經遇到了瓶頸,因此本論文提出利用實數運算的離散哈特萊轉換(discrete Hartley transform, DHT)來取代複數離散傅立葉轉換(DFT)的構想。然而離散哈特萊轉換的正交分頻多工系統並不像離散傅立葉轉換擁有環狀捲積(circular convolution)特性,因此造成在多路徑衰減通道產生子載波相互耦合(intercarrier coupling, ICC)的問題。為了解決此問題,我們利用離散哈特萊轉換矩陣的互補對(complementary pair)特性設計了可使通道矩陣對角化的DHT-based OFDM架構。此外,為了增加頻寬傳輸效率,所提出的DHT-based多載波調變/解調變器採用了兩個實數快速哈特萊轉換(FHT)核心和一個後處理單元(PPU),如此即可適用於二維的QAM調變方法。
為了驗證此構想的優點,我們將此DHT-based多載波調變/解調變器應用於IEEE 802.11a/g無線區域網路系統中。在硬體設計考量上,藉由所提出的平行式DCT-based FHT演算法與記憶體架構,可有效減少運算複雜度與記憶體存取次數以降低功率消耗。本電路的訊號量化雜訊比(SQNR)超過44 dB,在接收機訊雜比為26 dB時(64-QAM, 3/4碼率),此電路的施行損失(implementation loss)可小於0.1 dB。我們將所提出之DHT-based調變/解調變器使用台積電0.18-μm CMOS製程實現,其核心面積為928×935 μm2。此晶片最高操作頻率為54 MHz,可支援兩路的多輸入輸出正交分頻多工訊號。當工作在20 MHz頻率與1.8伏特時,其功率消耗為20.16 mW。
在多輸入多輸出解碼器的設計中,本論文提出了一個可支援2×2、4×4、8×8天線組態以及QPSK、16-QAM、64-QAM調變模式的高速低功率解碼器。藉由所提出的結合離散K最佳(distributed K-best, DKB)與連續干擾消除(successive interference cancellation, SIC)演算法,可大幅降低搜尋複雜度。與傳統K最佳演算法相比,離散K最佳演算法在每層所需拜訪的節點數可以從K√M減少到2K-1 (K為候選節點數,M為信號星座點大小)。為了讓此多輸入輸出解碼器能支援多種天線組態,我們將DKB與SIC方法設計成一些基本方塊,透過這些基本方塊可以彈性的將解碼器組裝成不同天線組態的電路。在硬體設計考量上,此設計能夠避免傳統K最佳演算法需要複雜的排序電路,此外我們也提出新的位移乘法器(shift multiplier, SM)來取代PED運算過程中所需的傳統乘法器,可以節省20%的功率消耗。我們將此多輸入輸出解碼器用聯電90-nm CMOS製程實現,所完成之高速低功率解碼器其核心面積為880×880μm2,可支援2×2、4×4、8×8天線組態以及QPSK、16-QAM、64-QAM調變模式。在8×8、64-QAM、K=5的傳輸模式,此晶片操作在101 MHz頻率與1.0伏特下可達到970 Mbps的解碼速率,並且僅需功率消耗12 mW。
摘要(英) Due to the well development of multimedia service and the convergence of wireless with the Internet, the modern communication systems should have the ability of high throughput rate to deal with the increasing data loading. The main challenges for a high throughput communication system are multipath interference and limited channel bandwidth. In order to overcome multipath interference, the digital modulation scheme advances from single carrier modulation to multicarrier modulation, i.e., orthogonal frequency-division multiplexing (OFDM); the antenna technique also progresses from single-antenna (single-input single-output, SISO) system to multiple-antenna (multiple-input multiple-output, MIMO) system for the enhancement of spectrum efficiency. As a result, OFDM modulation combining with MIMO techniques will be the evolutional trend for the next generation communication system. In this dissertation, the key components of OFDM and multiple-antenna techniques, multicarrier modulator/demodulator and MIMO detector, are designed and implemented from algorithm to hardware architecture level to achieve the low-power and high-performance targets.
The conventional OFDM transceiver usually uses FFT processor as the multicarrier demodulator. However, the study of FFT algorithm has been developed maturely. It has becomegoes to a bottleneck for FFT to reduce the computational complexity from algorithm level. Hence, we propose an idea to substitute DFT by DHT in an OFDM system. Nevertheless, unlike the DFT-OFDM system, the DHT-based OFDM system does not have the circular convolution property, which would cause the intercarrier coupling (ICC) problem in a multipath fading channel. In order to solve this problem, we use the complementary property of DHT matrix to devise a DHT-based OFDM architecture that can perfectly diagonalize the channel matrix. Besides, the proposed DHT-based multicarrier modulator/demodulator employs two real-valued fast DHT (FHT) kernels and one processing unit. It can be applied to the two-dimensional modulation scheme, such as QAM.
In order to verify the advantages of this idea, we have demonstrated the DHT-based multicarrier modulator/demodulator for IEEE 802.11a/g application. From the hardware design aspects, with the proposed parallel DCT-based FHT algorithm and memory-based architecture, the computational complexity and memory accesses can be effectively reduced. The signal-to-quantization ratio (SQNR) of this circuit is more thanover 44 dB. When the receiver SNR is 26 dB (64-QAM, 3/4 coding rate), the implementation loss of this circuit will be smaller than 0.1 dB. A test chip of the proposed DHT-based modulator/demodulator has been fabricated in a 0.18-μm CMOS technology with a core area of 928×935 μm2. The maximum operation frequency of this chip is 54 MHz, which can support two data streams for MIMO-OFDM. The average power consumption is about 20.16 mW at 20 MHz and 1.8 V supply voltage.
In the MIMO detector design, a high-throughput and low-power MIMO detector which can support 2×2, 4×4, 8×8 antenna configurations and QPSK, 16-QAM, 64-QAM modulation schemes has been proposed. The detection complexity is reduced considerably by using the combined distributed K-best (DKB) and successive interference cancellation (SIC) algorithm. Compared with the conventional K-best algorithm, the DKB algorithm reduces the number of visited nodes at each layer from K√Mto 2K-1 (K is the candidate number and M is the constellation size). The DKB and SIC schemes are designed as several elementary blocks for the antenna scalable ability. Then the antenna scalable architecture can be flexibly constructed by these elementary building blocks. In the hardware design consideration, our design avoids the complicated sorting circuit that is required in the conventional K-best detector. In addition, the conventional multipliers used for PED calculation are replaced by the proposed shift multiplier (SM) technique. It can save about 20% power consumption. A test chip of the proposed configurable MIMO detector has been fabricated in a 90-nm CMOS technology with a core area of 880×880 μm2. In the 8×8, 64-QAM, K=5 transmission mode, the power dissipation is merely 12 mW at 101 MHz clock rate and 1.0 V supply voltage, and the decoding throughput of this chip is up to 970 Mbps.
關鍵字(中) ★ 快速傅立葉轉換
★ 離散哈特萊轉換
★ 正交分頻多工
★ 多輸入多輸出
關鍵字(英) ★ MIMO
★ OFDM
★ DHT
★ FFT
論文目次 1 Introduction 1
1.1 Evolution and Trend of Wireless Communication Systems . . . . . . . . . . . . . 1
1.2 Overview of OFDM and MIMO Techniques . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 The History of OFDM Systems . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Multiple-input Multiple-output (MIMO) Techniques . . . . . . . . . . . . 5
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Goal and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Organization of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Overview of Non-DFT Based OFDM Systems 15
2.1 DCT-based OFDM System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.1 Performance Analysis for AWGN Channel . . . . . . . . . . . . . . . . . 16
2.1.2 Performance Analysis for Frequency Offset Environment . . . . . . . . . . 20
2.1.3 Channel Diagonalization Issue over Frequency-Selective Channel . . . . . 24
2.2 DST-based OFDM System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 DHT-based OFDM System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3 Two-dimensional DHT-Based OFDM System for Passband Transmission 31
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.1 Conventional DFT-OFDM System . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 Diagonalization Properties of DFT Matrix . . . . . . . . . . . . . . . . . . 35
3.2 Conventional DHT-OFDM System . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.1 DHT Matrix Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Problem Definition in the Conventional DHT-OFDM System . . . . . . . . 39
3.3 Proposed DHT-based OFDM System . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 Compatibility Consideration . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Similarity between DFT-OFDM and DHT-OFDM Signals . . . . . . . . . . . . . . 47
3.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4 Design of DHT-Based Multicarrier Modulator/Demodulator for OFDM Systems 53
4.1 The Proposed DHT-based OFDM Architecture . . . . . . . . . . . . . . . . . . . 54
4.2 The FHT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.1 Radix-2 FHT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.2 Radix-4 FHT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.3 The Proposed DCT-based FHT Algorithm . . . . . . . . . . . . . . . . . . 61
4.2.4 Parallel DCT-based FHT Algorithm . . . . . . . . . . . . . . . . . . . . . 65
4.2.5 Algorithm Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 The FHT Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.1 Pipelined Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.2 Memory-based Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.3 DCT-based FHT Architecture . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 DHT-Based OFDM Modulator and Demodulator Design . . . . . . . . . . . . . . 73
4.4.1 4-parallel DCT-based FHT architecture . . . . . . . . . . . . . . . . . . . 73
4.4.2 Architecture Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.3 Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4.4 Wordlength Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5 Chip Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5.1 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5.2 Performance Analysis and Comparison . . . . . . . . . . . . . . . . . . . 84
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5 Overview of Multiple-Antenna Techniques 87
5.1 Spatial Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.1.1 Receive Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.1.2 Transmit Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 Spatial Multiplexing (SM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.1 Linear Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.2 Nonlinear Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.4 Near-ML SM Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.4.1 Sphere Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4.2 K-Best Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.3 Architecture Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6 Power-efficient Design of High Throughput and Configurable MIMO Detector 105
6.1 Design Issue of the High Throughput and Configurable K-Best MIMO Detector . . 106
6.2 MIMO System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2.1 Real-valued Decomposition Model . . . . . . . . . . . . . . . . . . . . . 108
6.2.2 Evaluation of Complex and Real Models . . . . . . . . . . . . . . . . . . 108
6.3 System and Modified K-Best Algorithm Design . . . . . . . . . . . . . . . . . . . 110
6.3.1 Low-complexity Algorithm Description . . . . . . . . . . . . . . . . . . . 110
6.3.2 Scalable Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.4 Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.4.1 Shift Multiplier (SM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.4.2 First Child Unit (FCU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.4.3 Next Child Unit (NCU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.4.4 Configurable Consideration . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.4.5 Successive Interference Cancellation (SIC) Unit . . . . . . . . . . . . . . . 125
6.5 Chip Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.5.1 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.5.2 Analysis of the low-complexity design . . . . . . . . . . . . . . . . . . . . 127
6.5.3 Chip Comparison Results . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7 Conclusions and Future Work 131
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2.1 DHT-based OFDM System for Baseband transmission over Frequencyselective
Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2.2 K-best MIMO Detector with Adaptive K-value Selection . . . . . . . . . . 134
Bibliography 135
參考文獻 [1] H.-W. Lee, “3G LTE and IMT-Advanced Service,” in Global Standards and Research, Samsung Electronics, Feb. 2006.
[2] J. A. C. Bingham, “Multicarrier modulation for data transmission: An idea whose time has come,” IEEE Commun. Mag., vol. 28, no. 5, pp. 5–14, May. 1990.
[3] R. W. Chang, “Synthesis of band-limited orthogonal signals for multichannel data transmission,” Bell System Technical Journal, vol. 45, pp. 1775–1796, Dec 1966.
[4] S. B.Weinstein and P. M. Ebert, “Data transmission by frequency-division multiplexing using the discrete Fourier transform,” IEEE Trans. Commun. Technol., vol. COM-19, no. 10, pp. 628–634, Oct. 1971.
[5] B. Farhang-Boroujeny, “Multicarrier modulation with blind detection capability using cosine modulated filter banks,” IEEE Trans. Commun., vol. 51, no. 12, pp. 2057–2070, Dec. 2003.
[6] P. Tan and N. C. Beaulieu, “A comparison of DCT-based OFDM and DFT-based OFDM in frequency offset and fading channels,” IEEE Trans. Commun., vol. 54, no. 11, pp. 2113–2125, Nov. 2006.
[7] N. Al-Dhahir, H. Minn, and S. Satish, “Optimum DCT-based multicarrier transceivers for frequency-selective channels,” IEEE Trans. Commun., vol. 54, no. 5. pp. 911–921, May 2006.
[8] S. A. Martucci, “Symmetric convolution and the discrete sine and cosine transform,” IEEE Trans. Signal Process., vol. 42, no. 5. pp. 1038–1051, May 1994.
[9] F. Xiong, “M-ary amplitude-shift keying OFDM system,” IEEE Trans. Commun. vol. 51, no. 10, pp. 1638–1642, Oct. 2003.
[10] G. D. Mandyam, “Sinusoidal transforms in OFDM systems,” IEEE Trans. Broadcast., vol. 50, no. 2, pp. 172–184, Jun. 2004.
[11] R. Merched, “On OFDM and single-carrier frequency-domain systems based on trigonometric transforms,” IEEE Trans. Signal Process., vol. 13, no. 8, pp. 473–476, Aug. 2006.
[12] A. Tarighat, R. Bagheri, and A. H. Sayed, “Compensation schemes and performance analysis of IQ imbalances in OFDM receivers,” IEEE Trans. Signal Process., vol. 53, no.8, pp. 3257–3268, Aug. 2005.
[13] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998.
[14] G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,” Bell Labs Technical Journal, pp. 41–59, Autumn 1996.
[15] L.-F. Chen, Y. Chen, L.-C. Chien, Y.-H. Ma, C.-H. Lee, Y.-W. Lin, C.-C. Lin, H.-Y. Liu, T.-Y. Hsu, and C.-Y. Lee, “A 1.8V 250mW COFDM baseband receiver for DVB-T/H applications,” in Proc. ISSCC, Feb. 2006, pp. 262–263.
[16] J. W. Cooley and J. Turkey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput., vol. 19, pp. 297–301, Apr. 1965.
[17] H. Sorensen, M. Heideman, and C. Burrus, “On computing the split-radix FFT,” IEEE Trans. Acoust., Speech, Signal Process., vol. 34, no. 1, pp. 152–156, Jan. 1986.
[18] L. Jia, Y. Gao, J. Isoaho, and H. Tenhunen, “A new VLSI-oriented FFT algorithm and implementation,” in Proc. ASIC, 1998, pp. 337–341.
[19] J. Tan and G. L. Stüber, “Constant envelope multi-carrier modulation,” in Proc. MILCOM, 2002, vol. 1, pp. 607–611.
[20] K. Sathananthan and C. Tellambura, “Probability of error calculation of OFDM systems with frequency offset,” IEEE Trans. Commun., vol. 49, no. 11, pp. 1884–1888, Nov. 2001.
[21] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1998.
[22] F. Xiong, Digital Modulation Technniques, Boston, MA: Artech House, 2000.
[23] P. H. Moose, “A technique for orthogonal frequency division multiplexing frequency offset correction,” IEEE Trans. Commun., vol. 42, no. 10, pp. 2908–2914, Oct. 1994.
[24] V. Sanchez, P. Garcia, A. Peinado, J. Segura, and A. Rubio, “Diagonalizing properties of the discrete cosine transform,” IEEE Trans. Signal Process., vol. 43, no. 11, pp. 2631–2641, Nov. 1995.
[25] R. V. L. Hartely, “A more symmetrical Fourier analysis applied to transmission problems,” in Proc. IRE, Mar. 1942, vol. 30, pp. 144–150.
[26] R. N. Bracewell, “The discrete Hartley transform,” J. Opt. Soc. Amer., vol. 73, no. 12, pp. 1832–1835, Dec. 1983.
[27] C.-L. Wang, C.-H. Chang, and J. M. Cioffi, “Discrete Hartley transform based multicarrier modulation,” in Proc. ICASSP, Jun. 2000, vol. 5, pp. 2513–2516.
[28] C.-F. Wu, M.-T. Shiue, and C.-K. Wang, “DHT-based frequency-domain equalizer for DMT systems,” in Proc. EUSIPCO, Antalya, Turkey, Sep., 2005.
[29] D. Wang, D. Liu, F. Liu, and G. Yue, “A novel DHT-based ultra-wideband system,” in Proc. ISCIT, Oct. 2005, vol. 1, pp. 672–675.
[30] R. N. Bracewell, “Aspects of Hartley transform,” Proc. IEEE, vol. 82, no. 3, pp. 381–387, Mar. 1994.
[31] P. J. Davis, Circulant Matrices. New York: Wiley, 1979.
[32] G. Heinig and K. Rost, “Representation of Toeplitz-plus-Hankel matrices using trigonometric transformations with application to fast matrix-vector multiplication,” Linear Algebra Appl., vol. 275-276, pp. 225–248, 1998.
[33] ITU-T, “Asymmetrical Digital Subscriber Line (ADSL) Transceivers,” Rep. G.992.1, 1999.
[34] S. B. Pan and R. H. Park, “Unified systolic array for computation of DCT/DST/DHT,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, no. 2, pp. 413–419, Apr. 1997.
[35] P. K. Meher, T. Srikanthan, and J. C. Patra, “Scalable and modular memory-based systolic architectures for discrete Hartley transform,” IEEE Trans. Circuit and Syst.–I: Regular Papers, vol. 53, no. 5, pp. 1065–1077, May 2006.
[36] S. Haykin, Adaptive Filter Theory. Inc. Upper Saddle River, New Jersey: Prentice Hall, 2002.
[37] ETSI, “Digital video broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television EN 300 744,” Nov. 2004.
[38] O. Edfors, M. Sandell, J.-J. van de Beek, S. K.Wilson, and P. O. Borjesson, “OFDM channel estimation by singular value decomposition,” IEEE Trans. commun., vol. 46, no. 7, pp. 931–939, Jul. 1998.
[39] J. Proakis, Digital Communications. McGraw-Hill, 1995.
[40] L. Hanzo, M. Münster, B. J. Choi, and T. Keller, OFDM and MC-CDMA for Broadband Multi-user Communications, WLAN and Broadcasting. IEEE press and Wiley, 2003.
[41] B. O’Hara and Al Petrick, IEEE Handbook: A Designer’s Companion. New York: IEEE, 2004.
[42] P.-C. Chen, C.-K. Jao, and M.-T. Shiue, “A low complexity real-valued kernel DHT-based OFDM modulator/demodulator design,” in Proc. ISCAS, May 2009, pp. 1529–1532.
[43] H. S. Hou, “The fast Hartley algorithm,” IEEE Trans. Comput., vol. 36, no. 2, pp. 147–156, Feb. 1987.
[44] A. C. Erickson and B. S. Fagin, “Calculating the FHT in hardware,” IEEE Trans. Signal Process., vol. 40, no. 6, pp. 1341–1353, Jun. 1992.
[45] H. S. Malvar, “Fast computation of the discrete cosine transform and the discrete Hartley transform,” IEEE Trans. Acoust. Speech, Signal Process., vol. 35, no. 10, pp. 1484–1485, Oct. 1987.
[46] C. P. Kwong and K. P. Shiu, “Structured fast Hartley transform algorithms,” IEEE Trans. Acoust. Speech, Signal Process., vol. 34, no. 4, pp. 1000–1002, Aug. 1986.
[47] P. K. Meher, J. C. Patra, and M. N. S. Swamy, “High-throughput memory-based architecture for DHT using a new convolutional formulation,” IEEE Trans. Circuit and Syst.–II: Express Briefs, vol. 54, no. 7, pp. 606–610, Jul. 2007.
[48] R. N. Bracewell, “The fast Hartley transform,” Proc. IEEE, vol. 72, no. 8, pp. 1010–1018, Aug. 1984.
[49] IEEE standard for local and metropolitan area networks, part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE 802.11a, 1999.
[50] A. Wenzler, and E. Luder, “New structures for complex multipliers and their noise analysis,” in Proc. ISCAS, May 1995, pp. 1432–1435.
[51] K. Maharatna, E. Grass, and U. Jagdhold, “A 64-point Fourier transform chip for high-speed wireless LAN application using OFDM,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 484–493, Mar. 2004.
[52] C.-T. Lin, Y.-C. Yu, and L.-D. Van, “A low-power 64-point FFT/IFFT design for IEEE 802.11a WLAN application,” in Proc. ISCAS, May 2006, pp. 4523–4526.
[53] B. M. Bass, “A low-power, high-performance, 1024-point FFT processor,” IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 380–387, Mar. 1999.
[54] J.-I. Guo, G.-M. Liu, and C.-W. Jen, “A novel VLSI array design for the discrete Hartley transform using cyclic convolution,” in Proc. ISCAS, Apr. 1994, vol. 2, pp. 501–504.
[55] J.-I. Guo, “An efficient design for one-dimensional discrete Hartley transform using parallel additions,” IEEE Trans. on Signal Processing, vol. 48, no. 10, pp. 2806–2813, Oct. 2000.
[56] H.-C. Chen, T.-S. Chang, J.-I. Guo and C.-W. Jen, “The long length DHT design with a new hardware efficient distributed arithmetic approach and cyclic preserving partitioning,” IEICE Trans. Electron., vol. E88-C, no. 5, May 2005.
[57] H. S. Malvar, “Fast computation of the discrete cosine transform and the discrete Hartley transform,” IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. 35, no.10, pp. 1484–1485, Oct. 1987.
[58] B. Lee, “A new algorithm to compute the discrete cosine Transform,” IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. 32, no.6, pp. 1243–1245, Dec. 1984.
[59] Z. Cvetkovic and M. V. Popovic, “New fast recursive algorithms for the computation of discrete cosine and sine transforms,” IEEE Trans. on Signal Process., vol. 40, no. 8, pp. 2083–2086, Aug. 1992.
[60] Y.-H. Chan andW.-C. Siu, “New fast discrete Hartley transform algorithm,” IEEE Electronics Letters, vol. 27, no. 4, pp. 347–349, Feb. 1991.
[61] S. S. Agaian and O. Caglayan, “New fast Hartley transform with linear multiplicative complexity,”in Proc. ICIP, Oct. 2006, pp. 377–380.
[62] B. Lee, “A new algorithm to compute the discrete cosine transform,” IEEE Trans. on Acoustics, Speech, and Signal Process., vol. 32, no. 6, pp. 1243–1245, Dec. 1984.
[63] C.-K. Jao, S.-S. Long, and M.-T. Shiue, “DHT-based OFDM system for passband transmission over frequency-selective channel,” IEEE Signal Processing Letters., vol. 17, no. 8, pp. 699–702, Aug. 2010.
[64] T.-C. Pao, C.-C. Chang, and C.-K.Wang, “A variable-length DHT-based FFT/IFFT processor for VDSL/ADSL systems,” in Proc. APCCAS, Apr. 2004, pp. 381–384.
[65] G. D. Golden, G. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky, “Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture,” IEE Electronics Letters, vol. 35, no. 1, pp. 14–16, 1999.
[66] L. C. Godara, “Application of antenna arrays to mobile communications, part II: Beamforming and direction-of-arrival considerations,” Proc. IEEE, vol. 85, no. 8, pp. 1195–1245, Aug. 1997.
[67] M. O. Damen, A. Chkeif, and J.-C. Belfiore, “Lattice code decoder for space-time codes,” IEEE Commun. Lett., vol. 4, no. 5, pp. 161–163, May 2000.
[68] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in lattices,” IEEE Trans. Inform. Theory, vol. 48, no. 8, pp. 2201–2214, Aug. 2002.
[69] S. Bäro, J. Hagenauer, and M. Witzke, “Iterative detection of MIMO transmission using a list-sequential (liss) detector,” in Proc. ICC, 2003, pp. 2653–2657.
[70] K.-W. Wong, C.-Y. Tsui, R. S.-K Cheng, and W.-H. Mow, “A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels,” in Proc. ISCAS, May 2002, pp. 273–276.
[71] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H. Bolcskei, “VLSI implementation of MIMO detection using the sphere decoding algorithm,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1566–1577, July 2005.
[72] C. Studer, A. Burg, and H. Bolcskei, “Soft-output sphere decoding: Algorithms and VLSI implementation,” IEEE J. Sel. Areas Commun., vol. 26, no. 2, pp. 290–300, Feb. 2008.
[73] M.Wenk, M. Zellweger, A. Burg, N. Felber, andW. Fichtner, “K-best MIMO detection VLSI architectures achieving up to 424 Mbps,” in Proc. ISCAS, 2006, pp. 1151–1154.
[74] Z. Guo and P. Nilsson, “Algorithm and implementation of the K-best sphere decoding for MIMO detection,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 491–503, Mar. 2006.
[75] M. Shabany and P. G. Gulak, “Scalable VLSI architecture for K-best lattice decoders,” in Proc. ISCAS, 2008, pp. 940–943.
[76] C.-H. Yang, and D. Markovi′c, “A flexible DSP architecture for MIMO sphere decoding,” IEEE Trans. Circuit and Syst.–I: Regular Papers, vol. 56, no. 10, pp. 2301–2314, Oct. 2009.
[77] L. Liu, F. Ye, X. Ma, T. Zhang, and J. Ren, “A 1.1-Gb/s 115-pJ/bit configurable MIMO detector using 0.13-mum CMOS technology,” IEEE Trans. Circuit and Syst.–II: Express Briefs, vol. 57, no. 9, pp. 701–705, Sep. 2010.
[78] C.-H. Liao, T.-P. Wang, and T.-D. Chiueh, “A 74.8 mW soft-output detector IC for 8x8 spatial-multiplexing MIMO communications,” IEEE J. Solid-State Circuits, vol. 45, no. 2, pp. 411–421, Feb. 2010.
[79] B. M. Hochwald and S. ten Brink, “Achieving near-capacity on a multiple-antenna channel,” IEEE Trans. Commun., vol. 51, no. 3, pp. 389–399, Mar. 2003.
[80] M. Shabany, K. Su, and P. G. Gulak, “A piplined scalable high-throughput implementation of a near-ML K-best complex lattice decoder,” in Proc. ICASSP, 2008, pp. 3173–3176.
[81] S. Chen, T. Zhang, and Y. Xin, “Breadth-first tree search MIMO signal detector design and VLSI implementation,” in Proc. MILOCM, Oct. 2005, vol. 3, pp. 1470–1476.
[82] S. Chen, T. Zhang, and Y. Xin, “Relaxed K-best MIMO signal detector design and VLSI implementation,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 3, pp. 328–337, Mar. 2007.
[83] H.-L. Lin, R. C. Chang, and H.-L. Chen, “A high-speed SDM-MIMO decoder using efficient candidate searching for wireless communication,” IEEE Trans. Circuit and Syst.–II: Express Briefs, vol. 55, no. 3, pp. 289–293, Mar. 2008.
[84] M. Shabany, and P. G. Gulak, “A 0.13 mm CMOS 655Mb/s 4x4 64-QAM K-best MIMO detector,” in Proc. ISSCC, Feb. 2009, pp. 256–257.
[85] C.-J. Huang, C.-W. Yu, and H.-P. Ma, “A power-efficient configurable low-complexity MIMO detector,” IEEE Trans. Circuit and Syst.–I: Regular Papers, vol. 56, no. 2, pp. 485–496, Feb. 2009.
[86] M. S. Moreolo, R. Muñoz, G. Junyent, “Novel power efficient optical OFDM based on Hartley transform for intensity modulated direct detection systems”, J. Lightwave. Technol., vol. 28, no. 5, pp. 798–805, Mar. 2010.
指導教授 薛木添(Muh-Tian Shiue) 審核日期 2011-6-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明