博碩士論文 985201075 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.226.226.158
姓名 花銘遠(Ming-Yuan Hua)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 串接耦合量子點之熱電特性
(Thermoelectric Properties of Double Quantum Dots Embedded in a Nanowire)
相關論文
★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製★ 量子點的電子能階
★ 應用於數位電視頻帶之平衡不平衡轉換器設計★ 單電子電晶體之元件特性模擬
★ 半導體量子點之穿隧電流★ 有機非揮發性記憶體之量測與分析
★ 鍺奈米線與矽奈米線電晶體之研製★ 選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用
★ 以微控制器為基礎的智慧型跑步機系統研製★ 單電子電晶體耦合量子點的負微分電導效應
★ 單電子電晶體的熱電效應★ 多量子點系統之熱電效應
★ 多量子點系統之熱整流效應★ 單電子電晶體在有限溫度下的模擬
★ 分子電晶體之穿隧電流與熱電效應★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了瞭解量子點間電子躍遷強度、量子點間庫倫交互作用以及量子點大小變動對熱電特性的影響。我們利用雙能階安德森模型(Two Level Anderson Model)模擬雙量子點崁入奈米線的系統,並討論其熱電特性。其中雙能階安德森模型中包含量子點間電子躍遷、量子點內庫倫交互作用以及量子點間庫倫交互作用。庫倫阻斷情況下的熱流與電流可以利用凱帝旭格林函數的方法(Keldysh-Green’s function technique)計算得知。接著探討此系統在線性響應區間的電導、Seebeck coefficient、熱導以及ZT值。我們發現庫倫交互作用和量子點大小不一致都會抑制ZT值,但量子點間庫倫交互作用強度在大於某個程度後此效應卻幾乎不影響ZT值。
摘要(英) In order to investigate the influence of electron hopping, interdot Coulomb interaction, and size fluctuation on thermoelectric properties. We simulate thermoelectric properties of double Quantum Dots embedded in a nanowire by a two-level Anderson model which including electron hopping, intradot Coulomb interactions and interdot Coulomb interactions. The charge and heat currents in the Coulomb blockage regime are calculated by Keldysh Green’’s function technique. The electrical conductance, Seebeck coefficient, electronic thermal conductance, and figure of merit (ZT) of the system are calculated in the linear response regime. We find that the figure of merit ZT is markedly reduced by the size fluctuation and Coulomb interactions.
關鍵字(中) ★ 串接耦合量子點之熱電特性 關鍵字(英) ★ Thermoelectric Properties of Double Quantum Dots
論文目次 摘要 I
Abstract II
第一章 導論 1
1-1熱電效應與熱電轉換效能係數(Fiure of merit) 1
1-1-1 Seebeck 效應 1
1-1-2 Peliter 效應 3
1-2 熱電元件的發展 4
1-3 研究動機 7
第二章 系統模型建構與公式推導 8
2-1 系統模型 8
2-2 熱流與電流推導結果 10
2-3 格林函數的計算與分析 11
2-4 Figure of merit及各項熱電係數的定義 16
第三章 熱電效應的模擬 19
3-1 前言 19
3-2 雙量子點間電子躍遷強度對ZT值的效應 19
3-2-1 不考慮聲子熱導的情況下調變tAB 20
3-2-2 聲子熱導存在情況下tAB調變對ZT值的效應 24
3-3 量子點間庫倫交互作用對ZT值的效應 27
3-4 量子點材料與大小對ZT值的效應 29
3-4-1 考慮不同雙量子點能階情況並討論ZT值 29
3-4-2 量子點尺寸不一致的情況下討論ZT值 33
第四章 結論 35
參考文獻 37
圖目錄
圖 1 - 1 Seebeck效應(熱電耦熱電元件) 2
圖 1 - 2 Pelitier 效應(熱電製冷器) 3
圖 1 - 3 Skutterudite結構示意圖 5
圖 2 - 1串聯雙量子點崁入奈米線系統示意圖 8
圖 3 - 1 調變電子跳躍強度tAB,電導Ge、S (Seebeck coefficient)、電子熱導ke、ZT值與溫度變化的關係圖 22
圖 3 - 2變化電子跳躍強度S2、Ge/ke與溫度的關係圖 23
圖 3 - 3調控不同tAB,羅倫茲數(Lorenz number)與溫度作圖 24
圖 3 - 4不同tAB情況下(a)忽略kph的ZT與溫度關係圖 (b)考慮kph的ZT與溫度關係圖 25
圖 3 - 5 ke/kph與溫度關係圖 26
圖 3 - 6在不同tAB的情況下,S2、Ge/k及ZT與溫度的關係圖 27
圖 3 - 7電導、熱電系數(Seebeck Coefficient)、ZT在改變不同的UAB下對溫度做圖 28
圖 3 - 8電導、熱電系數(Seebeck Coefficient)、ZT在改變不同的UAB下對溫度的做圖 29
圖 3 - 9改變不同能階情況各個參數與溫度關係圖 30
圖 3 - 10改變不同能階情況Ge與溫度關係圖 31
圖 3 - 11改變不同能階情況功率係數與溫度關係圖 33
圖 3 - 12 固定量子點B的能階EB=EF+32?0改變量子點A能階 34
表目錄
表2-1 電子總能(Hamiltonian)之算符與其物理意義 9
表2-2 熱流及電流參數定義 10
表2-3 系統推遲格林函數之機率因子 12
表2-4 機率因子與其物理意義 13
參考文獻 [1.1] T. J. Seebeck. “Ma Magnetische polarization der metalle und erzedurch temperature–differenze. Abhand deut. ” Akad. Wiss. Berlin, pp. 265-373, (1821)
[1.2] J. C., Peltier., “Nouvelles experiences sur la caloriecete des courans electriques.” Ann. Chem., LVI, pp. 371-387, (1834)
[1.3] D.M. Rowe, Ph.D., D.Sc. “Thermoelectrics Handbook (Macro To Nano)”, CRC, New York (2006).
[1.4] G. Mahan, B. Sales, and J. Sharp., “Thermoelectric Materials:New Approaches To An Old Problem” Phys. Today., 50(3), 42 (1997)
[1.5] A. F. Ioffe, “Semiconductor Thermoelements and Thermoelectric Cooling”, Infosearch, London, (1957)
[1.6] H. J. Goldsmd,. B. Sc., and R. W. Dougl, “The use of semiconductors in thermoelectric refrigeration”, Br. J. Appl. Phys. 5, 386 (1954).
[1.7] M. S. Dresselhaus, G. Chen, M. Y. Tang., R. Yang., H Lee., D. Wang., Z. Ren., J. –P. Fleurial, and P. Gogna., “New Directions for Low-Dimensional Thermoelectric Materials” , Advanced Materials. 19, p1043-1053 (2007).
[1.8] D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, and J. Vandersande, B. Chen and C. Uher, “Low-temperature transport properties of p-type CoSb3” , Phys. Rev. B, 51, 9622
[1.9] G. S. Nolas., D. T. Morelli., T. M. Tritt, “SKUTTERUDITES:A Phonon-Glass-Electron Crystal Approach to Advanced Thermoelectric Energy Conversion Applications” ,Annu. Rev. Mater, 29, 89 (1999).
[1.10] T. Caillat, A. Borshchevsky., J.-P. Fleurial., “Properties of single crystalline semiconducting CoSb3” , J. Appl. Phys, 80, 4442 (1996).
[1.11] L. D. Hicks., and M. S. Dresselhaus., “Thermoelectric figure of merit of a one-dimensional conductor”, Phys. Rev. B, 47, 16631 (1993)
[1.12] L. D. Hicks., T. C. Harman., X. Sun. and M. S. Dresselhaus.,“Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit”,Phys. Rev. B, 53, R10493 (1996)
[1.13] G. Slack, in CRC Hadbook of Thermoelectric[1.1]
[1.14] L. D. Hicks. and M. S. Dresselhaus.,“Effect of quantum-well structures on the thermoelectric figure of merit”,Phys. Rev. B, 47, 12727 (1993)
[1.15] T. Koga, S. B. Cronin, M. S. Dresselhaus, J. L. Liu, and K. L. Wang.,“Experimental proof-of-principle investigation of enhanced Z3DT in (001) oriented Si/Ge superlattices ”, Appl. Phys. Lett. 76, 3944 (2000)
[1.16] G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices” ,Phys. Rev. B, 57, 14958(1998).
[1.17] G. Springholz., V. Holy, M. Pinczolits and G. Bauer.,“Self-Organized Growth of Three-Dimensional Quantum-Dot Crystals with fcc-Like Stacking and a Tunable Lattice Constant” Science, 282, 734 (1998)
[1.18] G. Springholz., M. Pinczolits, P. Mayer. V. Holy, G. Bauer, H. H. Kang, and L. Salamanca-Riba,“Tuning of Vertical and Lateral Correlations in Self-Organized PbSe/Pb1-xEuxTe Quantum Dot Superlattices”Phys. Rev. Lett., 84, 4669 (2000)
[1.19] T. C. Harman., P. J. Taylor., M. P. Walsh, and B. E. LaForge.“Quantum Dot Superlattice Thermoelectric Materials and Devices”Science, 297, 2229 (2002)
[1.20] Y. –M. Lin., and M. S. Dresselhaus.,“Thermoelectric properties of superlattice nanowires” Phys. Rev. B, 68, 075304 (2003)
[1.21] C. Dames. and G. Chen., “Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires” J. Appl. Phys., 95, 682 (2004)
[1.22] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheil, J. K. Yu, W. A. Goddard III, J. R. Heath, “Silicon nanowires as efficient thermoelectric materials” Nature, 451, 168(2008).
[1.23] Y. Lan, A. J. Minnich, G. Chen, Z. Ren, “Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach” Adv. Funct. Mater, 20, 357(2010).
[1.24] R. Yang, G. Chen, “Thermal conductivity modeling of periodic two-dimensional nanocomposites” Phys. Rev. B, 69,195316(2004).
[1.25] T. Markussen, A. P. Jauho, M. Brandyge, “Surface-Decorated Silicon Nanowires: A Route to High-ZT Thermoelectrics” Phys. Rev. Lett,, 103, 055502(2009).
[1.26] D. H. Santamore, M. C. Cross, “Effect of Phonon Scattering by Surface Roughness on the Universal Thermal Conductance” Phys. Rev. Lett., 87, 115502(2001).
[1.27] L. G. C. Rego, G. Kirczennow, “Quantized Thermal Conductance of Dielectric Quantum Wires” Phys. Rev. Lett., 81, 232(1998).
[2.1] H. Haug and A. P. Jauho: Quantum Kinetics in Transport and Optics of Semiconductions (Springer, Heidelberg, 1996)
[2.2] David M. T. Kuo and Y. C. Chang, “Electron tunneling rate in quantum dots under a uniform electric field”, Phys. Rev. B, 61, 11051 (2000)
[2.3] B. R. Bulka and T. Kostyrko, “Electronic correlations in coherent transport through a two quantum dot system”, Phys. Rev. B, 70, 205333 (2004)
[2.4] David. M. T. Kuo and Y. C. Chang, “Tunneling Current Spectroscopy of a Nanostructure Junction Involving Multiple Energy Levels”, Phys. Rev. Lett, 99, 086803 (2007)
[2.5] Y. C. Chang and David. M. T. Kuo, “Theory of charge transport in a quantum dot tunnel junction with multiple energy levels”, Phys. Rev. B, 77, 245412 (2008)
[2.6] P. Pals and A. MacKinnon, “Coherent tunnelling through two quantum dots with Coulomb interaction ”, Condens. Matter, 8, 5401 (1996)
[3.1] C. Dames. and G. Chen.,“Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires” J. Appl. Phys., 95, 682 (2004)
[3.2] D. M. T. Kuo. and Y. C. Chang., “Thermoelectric and thermal rectification properties of quantum dot junctions” Phys. Rev. B, 81, 205321 (2010)
[3.3] P. Murphy., S. Mukerjee, and J. Moore, “Optimal thermoelectric figure of merit of molecular junction”, Phys. Rev. B 78, 161406 (2008).
[3.4] T. Markussen., A. P. Jauho., and M. Brandyge, “Surface-decorated silicon nanowires: a route to high-ZT thermoelectrics” , Phys. Rev. Lett. 103, 055502 (2009).
[3.5] K. Schwab., E. A. Henriksen. J. M. Worlock., and M. L. Roukes. “Measurement of the quantum of thermal conductance” ,Nature 404, 974 (2004)
[3.6] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard III, and J. R. Heath. “Silicon nanowires as efficient thermoelectricmaterials” ,Nature 451, 168 (2004)
指導教授 郭明庭(Ming-Ting Kuo) 審核日期 2011-6-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明