參考文獻 |
[1.1] T. J. Seebeck. “Ma Magnetische polarization der metalle und erzedurch temperature–differenze. Abhand deut. ” Akad. Wiss. Berlin, pp. 265-373, (1821)
[1.2] J. C., Peltier., “Nouvelles experiences sur la caloriecete des courans electriques.” Ann. Chem., LVI, pp. 371-387, (1834)
[1.3] D.M. Rowe, Ph.D., D.Sc. “Thermoelectrics Handbook (Macro To Nano)”, CRC, New York (2006).
[1.4] G. Mahan, B. Sales, and J. Sharp., “Thermoelectric Materials:New Approaches To An Old Problem” Phys. Today., 50(3), 42 (1997)
[1.5] A. F. Ioffe, “Semiconductor Thermoelements and Thermoelectric Cooling”, Infosearch, London, (1957)
[1.6] H. J. Goldsmd,. B. Sc., and R. W. Dougl, “The use of semiconductors in thermoelectric refrigeration”, Br. J. Appl. Phys. 5, 386 (1954).
[1.7] M. S. Dresselhaus, G. Chen, M. Y. Tang., R. Yang., H Lee., D. Wang., Z. Ren., J. –P. Fleurial, and P. Gogna., “New Directions for Low-Dimensional Thermoelectric Materials” , Advanced Materials. 19, p1043-1053 (2007).
[1.8] D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, and J. Vandersande, B. Chen and C. Uher, “Low-temperature transport properties of p-type CoSb3” , Phys. Rev. B, 51, 9622
[1.9] G. S. Nolas., D. T. Morelli., T. M. Tritt, “SKUTTERUDITES:A Phonon-Glass-Electron Crystal Approach to Advanced Thermoelectric Energy Conversion Applications” ,Annu. Rev. Mater, 29, 89 (1999).
[1.10] T. Caillat, A. Borshchevsky., J.-P. Fleurial., “Properties of single crystalline semiconducting CoSb3” , J. Appl. Phys, 80, 4442 (1996).
[1.11] L. D. Hicks., and M. S. Dresselhaus., “Thermoelectric figure of merit of a one-dimensional conductor”, Phys. Rev. B, 47, 16631 (1993)
[1.12] L. D. Hicks., T. C. Harman., X. Sun. and M. S. Dresselhaus.,“Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit”,Phys. Rev. B, 53, R10493 (1996)
[1.13] G. Slack, in CRC Hadbook of Thermoelectric[1.1]
[1.14] L. D. Hicks. and M. S. Dresselhaus.,“Effect of quantum-well structures on the thermoelectric figure of merit”,Phys. Rev. B, 47, 12727 (1993)
[1.15] T. Koga, S. B. Cronin, M. S. Dresselhaus, J. L. Liu, and K. L. Wang.,“Experimental proof-of-principle investigation of enhanced Z3DT in (001) oriented Si/Ge superlattices ”, Appl. Phys. Lett. 76, 3944 (2000)
[1.16] G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices” ,Phys. Rev. B, 57, 14958(1998).
[1.17] G. Springholz., V. Holy, M. Pinczolits and G. Bauer.,“Self-Organized Growth of Three-Dimensional Quantum-Dot Crystals with fcc-Like Stacking and a Tunable Lattice Constant” Science, 282, 734 (1998)
[1.18] G. Springholz., M. Pinczolits, P. Mayer. V. Holy, G. Bauer, H. H. Kang, and L. Salamanca-Riba,“Tuning of Vertical and Lateral Correlations in Self-Organized PbSe/Pb1-xEuxTe Quantum Dot Superlattices”Phys. Rev. Lett., 84, 4669 (2000)
[1.19] T. C. Harman., P. J. Taylor., M. P. Walsh, and B. E. LaForge.“Quantum Dot Superlattice Thermoelectric Materials and Devices”Science, 297, 2229 (2002)
[1.20] Y. –M. Lin., and M. S. Dresselhaus.,“Thermoelectric properties of superlattice nanowires” Phys. Rev. B, 68, 075304 (2003)
[1.21] C. Dames. and G. Chen., “Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires” J. Appl. Phys., 95, 682 (2004)
[1.22] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheil, J. K. Yu, W. A. Goddard III, J. R. Heath, “Silicon nanowires as efficient thermoelectric materials” Nature, 451, 168(2008).
[1.23] Y. Lan, A. J. Minnich, G. Chen, Z. Ren, “Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach” Adv. Funct. Mater, 20, 357(2010).
[1.24] R. Yang, G. Chen, “Thermal conductivity modeling of periodic two-dimensional nanocomposites” Phys. Rev. B, 69,195316(2004).
[1.25] T. Markussen, A. P. Jauho, M. Brandyge, “Surface-Decorated Silicon Nanowires: A Route to High-ZT Thermoelectrics” Phys. Rev. Lett,, 103, 055502(2009).
[1.26] D. H. Santamore, M. C. Cross, “Effect of Phonon Scattering by Surface Roughness on the Universal Thermal Conductance” Phys. Rev. Lett., 87, 115502(2001).
[1.27] L. G. C. Rego, G. Kirczennow, “Quantized Thermal Conductance of Dielectric Quantum Wires” Phys. Rev. Lett., 81, 232(1998).
[2.1] H. Haug and A. P. Jauho: Quantum Kinetics in Transport and Optics of Semiconductions (Springer, Heidelberg, 1996)
[2.2] David M. T. Kuo and Y. C. Chang, “Electron tunneling rate in quantum dots under a uniform electric field”, Phys. Rev. B, 61, 11051 (2000)
[2.3] B. R. Bulka and T. Kostyrko, “Electronic correlations in coherent transport through a two quantum dot system”, Phys. Rev. B, 70, 205333 (2004)
[2.4] David. M. T. Kuo and Y. C. Chang, “Tunneling Current Spectroscopy of a Nanostructure Junction Involving Multiple Energy Levels”, Phys. Rev. Lett, 99, 086803 (2007)
[2.5] Y. C. Chang and David. M. T. Kuo, “Theory of charge transport in a quantum dot tunnel junction with multiple energy levels”, Phys. Rev. B, 77, 245412 (2008)
[2.6] P. Pals and A. MacKinnon, “Coherent tunnelling through two quantum dots with Coulomb interaction ”, Condens. Matter, 8, 5401 (1996)
[3.1] C. Dames. and G. Chen.,“Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires” J. Appl. Phys., 95, 682 (2004)
[3.2] D. M. T. Kuo. and Y. C. Chang., “Thermoelectric and thermal rectification properties of quantum dot junctions” Phys. Rev. B, 81, 205321 (2010)
[3.3] P. Murphy., S. Mukerjee, and J. Moore, “Optimal thermoelectric figure of merit of molecular junction”, Phys. Rev. B 78, 161406 (2008).
[3.4] T. Markussen., A. P. Jauho., and M. Brandyge, “Surface-decorated silicon nanowires: a route to high-ZT thermoelectrics” , Phys. Rev. Lett. 103, 055502 (2009).
[3.5] K. Schwab., E. A. Henriksen. J. M. Worlock., and M. L. Roukes. “Measurement of the quantum of thermal conductance” ,Nature 404, 974 (2004)
[3.6] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard III, and J. R. Heath. “Silicon nanowires as efficient thermoelectricmaterials” ,Nature 451, 168 (2004)
|