參考文獻 |
[ 1 ] GPGPU, General-Purpose Computation on Graphics Hardware. [Online]. Available: http://gpgpu.org/, Jun 1,2011.
[ 2 ] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis., vol. 60, pp. 91–110, 2004.
[ 3 ] NVIDIA Corporation, Compute Unified Device Architecture Programming Guide. [Online]. Available: http://developer.nvidia.com/category/zone/cuda-zone, Jun 1, 2011.
[ 4 ] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Trans.
Pattern Anal. and Mach. Intell., vol. 24, no. 7, pp. 971–987, 2002.
[ 5 ] K. Mikolajczyk and C. Schmid, “A performance evaluation of local descriptors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10, pp. 1615–1630, Oct. 2005.
[ 6 ] M. Brown, and D.G. Lowe, “Invariant features from interest point groups”, in Proc. of 2002 International Conf. British Machine Vision,pp.656-665, 2002.
[ 7 ] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, “ Comm. of the ACM, vol. 24, no. 6, pp. 381-395, 1981.
[ 8 ] A. Psyllos, C.N. Anagnostopoulos, and E. Kayafas, “Vehicle logo recognition using a SIFT-based enhanced matching scheme”, IEEE Trans. on Intell. Transportation Syst., vol. 11, no. 2, pp. 322-328, June 2010.
[ 9 ] Y. Ke and R. Sukthankar, “PCA-SIFT: a more distinctive representation for local image descriptors,” Proc. Conf. Computer Vision and Pattern Recognition, pp. 511-517, 2004.
[ 10 ] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “SURF: speeded-up robust features,” Comput. Vis. Image Underst., vol. 110, no. 3, pp. 346–359, Jun. 2008.
[ 11 ] L. Juan and O. Gwu, “A comparison of SIFT, PCA-SIFT and SURF,” Int. J. of Image Process., vol. 3, no. 4, pp. 143–152, Oct. 2009
[ 12 ] Q. Zhang, Y. Chen, Y. Zhang, and Y. Xu, “SIFT implementation and optimization for multi-core systems,” Proc. IEEE Int. Symp. Parallel and Distributed Process., pp. 1–8, Apr. 2008.
[ 13 ] Y. Sato, T. Sugimura, H. Noda, Y. Okuno, K. Arimoto, and T. Nagasaki, “Integral-image based implementation of U-SURF algorithm for embedded super parallel processor,” in Proc. Intell. Signal and Commun. Syst., pp. 485-
488, Jan. 2009.
[ 14 ] Y. Sato, K. Muller, A. Smolic, B. Frohlich, and T. Wiegand, “SIFT implementation and optimization for general-purpose GPU,” in Proc. of Int. Conf. in Central Europe on Comput. Graphics, Visualization and Comput. Vision., pp. 317-322, Feb. 2007.
[ 15 ] S. N. Sinha , J. Frahm , M. Pollefeys , and Y. Genc, “GPU-based video feature tracking and matching,” in Workshop on Edge Computing Using New Commodity Architectures (EDGE), vol. 12, pp. 1-15, May. 2006.
[ 16 ] S. Warn, W. Emeneker, J. Cothren, and A. Apon, “Accelerating SIFT on parallel architectures,” in Proc. of 2009 Int. Conf. Cluster Computing and Workshops, pp. 1-4, 2009.
[ 17 ] J. Kim, E. Park, X. Cui, H. Kim, and W. A. Gruver, “A fast feature extraction in object recognition using parallel processing on CPU and GPU,” in Proc. of 2009 Int. Conf. syst., Man and Cybern., pp. 3842, 2009.
[ 18 ] V. Podlozhnyu, Image Convolution with CUDA [Online]. Available: http://www.ieee.org/documents/ieeecitationref.pdf, Jun 1, 2007.
[ 19 ] C. Wu, “SiftGPU: A GPU implementation of scale invariant feature transform (SIFT),” [Online]. Available: http://www.cs.unc.edu/~ccwu/siftgpu/, Jun 1, 2011.
|