參考文獻 |
[1]W. Xi, W. R. Tinga, W. A. G. Voss, and B. Q. Tian, “New results for coaxial re-entrant cavity with partially dielectric filled gap,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 4, pp. 747–753, Apr. 1992.
[2]M. D. Janezic, E. F. Kuester, and J. Baker-Jarvis, “Broadband complex permittivity measurements of dielectric substrates using a split-cylinder resonator,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Fort Worth, TX, Jun. 2004, pp. 1817–1820.
[3]K. M. C. Branch, J. Morsey, and A. C. Cangellaris, “Physically consistent transmission line models for high-speed interconnects in lossy dielectrics,” IEEE Trans. Adv. Packag., vol. 25, no. 2, pp. 129–135, Aug. 1990.
[4]R. Djordjevic´ and R. M. Biljic´, “Wideband frequency-domain characterization of FR-4 and time-domain causality,” IEEE Trans. Electromagn.Compat., vol. 43, no. 4, pp. 662–667, Nov. 2001.
[5]J. Baker-Jarvis and E. J. Vanzura, “Improved technique for determining complex permittivity with the transmission/reflection method,” IEEE Trans. Microw. Theory Tech., vol. 38, no. 8, pp. 1096–1103, Aug. 1990.
[6]K. Staebell, M. Noffke, and D. Misra, “On the in situ probe method for measuring the permittivity of materials at microwave frequencies,” in Proc. IEEE. Instr. Meas. Technol. Conf., 1990, pp. 28–31.
[7]S. B. Kumar, U. Raveendranath, P. Mohanan, and K. T. Mathew, “A simple free-space method for measuring the complex permittivity of single and compound dielectric materials,” Microw. Opt. Technol. Lett., vol. 26, no. 2, pp. 117–119, Jul. 2000.
[8]P. K. Singh et al., “High frequency measurement of dielectric thin films,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., San Diego, CA, May 1994, pp. 1457–1460.
[9]W. Williamson, III et al., “High frequency dielectric properties of thin film PZT capacitors,” Integrated Ferroelectronics, vol. 10, pp. 335–342, 1995.
[10]R. Voelker, G. Lei, G. Pan, and B. Gilbert, “Determination of complex permittivity of low-loss dielectrics,” IEEE Trans. Microw. TheoryTech., vol. 45, no. 10, pp. 1995–1960, Oct. 1997.
[11]W.B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proceedings of the IEEE, vol. 62, pp. 33-36, Jan. 1974.
[12]Chao-Hsiung Tseng,and Tah-Hsiung Chu, “Measurement of frequency-dependent equivalent width of substrate integrated waveguide,” IEEE Trans. Microw. TheoryTech., vol. 54, no. 4, pp. 1431–1437, Apr. 2006.
[13]A. Boughriet, C. Legrand, and A. Chapoton, “Noniterative stable transmission/reflection method for low-loss material complex permittivity determination,” IEEE Trans. Microwave Theory Tech., vol. 45, no. 1, pp. 52-57, Jan. 1997.
[14]C. H. Riedell, M. B. Steer, M. R. Kay, J. S. Kasten, M. S. Basel, and R. Pomerleau, “Dielectric characterization of printed circuit board substrates,” IEEE Trans. Instr. Meas., vol. 39, no. 2, pp. 437-440, Apr. 1990.
[15]M. J. Hill, and L. E. Wojewoda, “A study of permittivity measurement reproducibility utilizing the Agilent 4291B,” IEEE Trans.Adv. Packag., vol. 29, no. 4, pp. 714–718, Nov. 2006.
[16]K.-P. Lätti, M. Kettunen, Juha-Pekka Ström, and P. Silventoinen, “A review of microstrip T-resonator method in determining the dielectric properties of printed circuit board materials,” IEEE Trans. Instr. Meas., vol. 56, no. 5, pp. 1845-1850, Oct. 2007.
[17]H. Suzuki and T. Kamijo, “Millimeter-wave measurement of complex permittivity by perturbation method using open resonator,” IEEE Trans. Instr. Meas., vol. 57, no. 12, pp. 2868-2873, Dec. 2008.
[18]Z. Guo, G. Pan, S. Hall, and C. Pan, “Broadband characterization of complex permittivity for low-loss dielectrics: circular PC board disk approach,” IEEE Trans. Antennas Propag., vol. 57, no. 10, pp. 3126–3135, Oct. 2009.
[19]Agilent 4291B RF Impedance/Material Analyzer Operation Manual, 5th ed. Palo Alto, CA: Agilent Technologies, 2002.
[20]Agilent Technologies Impedance Measurement Handbook. Palo Alto, CA: Agilent Technologies, 2000.
[21]D. I. Amey and J. P. Curilla, “Microwave properties of ceramic materials,” in Proc. 41st Electron. Compon. Technol. Conf., May 1991, pp. 267–272.
[22]D. I. Amey and S. J. Horowitz, “Materials performance at frequencies up to 20 GHz,” in Proc. IEMT/IMC Symp., Apr. 1997, pp. 331–336.
[23]J. Carroll, M. Li, and K. Chang, “New technique to measure transmission line attenuation,” IEEE Trans. Microw. Theory Tech., vol. 43, no. 1, pp. 219–222, Jan. 1995.
[24]Kengyi Huang and Tsenchieh Chiu, “ LTCC wideband filter design with selectivity enhancement, ” IEEE Microwave and Wireless Components Lett., vol. 19, no. 7, pp. 452-454, July 2009.
[25]Kamal Sarabandiand Eric S. Li, “ Microstrip ring resonator for soil moisture measurements, ” IEEE Trans. Geosci. Remote Sensing, vol. 15, no. 5, pp. 1223-1231, Sept. 1997.
[26]D. Ahn, J. S. Park, C. S. Kim, J. Kim, Y. Qian, and T. Itoh, “A design of the low-pass filter using the novel microstrip defected ground structure, ” IEEE Trans. Microw. Theory Theory Tech., vol. 49, no 1, pp. 86-93, Jan. 2001.
[27]Duk-Jae Woo and Taek-Kyung Lee, “High-Q band rejection filter by using U-slot DGS, ” Microwave conference, vol 2, no. 4,April 2006.
[28]Yuchun Guo and Qing Wang, “An improved Equivalent circuit parameters extraction method for dumbbell-shape DGS, ”IEEE Microwave Technology and Computational Electromagnetics, vol 10, no 11,pp.166-168,Nov. 2009.
[29http://www.esss.com.br/events/ansys2010/pdf/22_6_1150.pdf
[30]http://www.rogerscorp.com/
[31]http://www.kinsten.com.tw/
[32]http://www.home.agilent.com/
|