參考文獻 |
[1] L. Sheng, J. C. Jensen, and L. E. Larson, “A wide-bandwidth Si/SiGe HBT direct conversion sub-harmonic mixer/downconverter,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1329-1337, Sep. 2000.
[2] M. Goldfarb, E. Balboni, and J. Gavey, “Even harmonic double-balanced active mixer for use in direct conversion receivers,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1762-1766, Oct. 2003.
[3] R. Svitek and S. Raman, “5-6 GHz SiGe active I/Q subharmonic mixer with power supply noise effect characterization,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 14, no. 7, pp. 319-321, Jul. 2004.
[4] K. J. Jon, M. Y. Park, C. S. Kim, and H. K. Yu, “ Subharmonically pumped CMOS frequency conversion (up and down) circuits for 2-GHz WCDMA direct-conversion transceiver,” IEEE J. Solid-State Circuits, vol. 39, no. 6, pp. 871-884, Jun. 2004.
[5] T. Yamaji and H. Tanimoto, and H. Kokatsu, “An I/Q active balanced harmonic mixer with IM2 cancelers and a 45 degrees phase shifter,” IEEE J. Solid-State Circuits, Feb. 1998, pp. 368-369, 466.
[6] J. Kim, K. T. Kornegay, J. Alvarado Jr., C. H. Lee, and J. Laskar, “W-band double-balanced down-conversion mixer with Marchand baluns in silicon-germanium technology,” Electron. Lett., vol. 45, no. 16, pp. 43-44, Jul. 2009.
[7] M. Kimishima, T. Ataka, and H. Okabe, “A family of Q, V and W-band monolithic resistive mixers,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2001, pp. 115-118.
[8] A. R. Barnes, P. Munday, and M. T. Moore, “A comparison of W-band monolithic resistive mixer architectures,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2002, pp. 1867-1870.
[9] T. A. Bos, and E. Camargo, “A balanced resistive mixer avoiding an IF balun,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2002, pp. 245-248.
[10] S. Gunnarsson, K. Yhland, and H. Zirath, “pHEMT and mHEMT ultra wideband millimeterwave balanced resistive mixers,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2004, pp. 1141-1144.
[11] M. Varonen, M. Karkkainen, P. Kangaslahti and K. A. I. Halonen, “Resistive HEMT mixers for 60-GHz broad-band telecommunication,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1322-1330, Apr. 2005.
[12] M. Varonen, M. Karkkainen, P. Kangaslahti and K. A. I. Halonen, “V-band balanced resistive mixer in 65-nm CMOS,” in Eur. Solid State Circuits Conf., Sep. 2007, pp. 360-363.
[13] H. U. Wei, C. Meng, K. C. Tsung, and G. W. Huang, “12~18 GHz resistive mixer with a miniature marchand balun using standard CMOS process,” in Asia Pacific Micro. Conf., Dec. 2009, pp. 2312-2315.
[14] K. W. Yeom, and D. H. Ko, “A novel 60-GHz monolithic star mixer using gate-drain-connected pHEMT diodes,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2435-2440, Jul. 2005.
[15] M. Sudow, K. Andersson, P. A. Nilsson, and N. Rorsman, “A highly linear double balanced schottky diode S-band mixer,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 6, pp. 336-338, Jun. 2006.
[16] C. C. Kuo, C. K. Kuo, C. J. Kuo, S. A. Maas, and H. Wang, “Novel miniature and broadband millimeter-wave monolithic star mixer,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 793-802, Apr. 2008.
[17] J. C. Jeong, I. B. Yom, and K. W. Yeom, “An active IF balun for a doubly balanced resistive mixer,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 224-226, Apr. 2009.
[18] S. Chenyan, L. Ivy, and B. L. Olga, “2.4 GHz 0.18 ?m CMOS passive mixer with integrated baluns,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2009, pp. 409-412.
[19] C. H. Lien, P. H. Huang, K. Y. Kao, K. Y. Lin, and H. Wang, “60 GHz double-balanced gate-pumped down-conversion mixers with a combined hybrid on 130 nm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 3, pp. 160-162, Mar. 2010.
[20] K. S. Ang, A. H. Baree, S. Nam, and I. D. Robertson, “A millimeter-wave monolithic sub-harmonically pumped resistive mixer,” IEEE Asia-Pacific Microwave Conference, Dec. 1999, pp. 222-225.
[21] M. F. Lei, P. S. Wu, T. W. Huang, and H. Wang, “Design and analysis of miniature W-band MMIC subharmonically pumped resistive mixer,” in IEEE MTT-S Int. Microwave Symp. Dig., 2004, pp. 235-238.
[22] Y. J. Hwang, H. Wang, and T. H. Chu, “A W-band subharmonically pumped monolithic GaAs-based HEMT gate mixer,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 7, pp. 313-315, Jul. 2004.
[23] P. C. Yeh, W. C. Liu, and H. K. Chiou, “Compact 28-GHz subharmonically pumped resistive mixer MMIC using a lumped-element highpass/Band-pass balun,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 62-64, Feb. 2005.
[24] F. Ellinger, “26.5-30-GHz resistive mixer in 90-nm VLSI SOI CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 8, pp. 2559-2565, Aug. 2005.
[25] M. Bao, H. Jacobsson, L. Aspemyr, G. Carchon, and X. Sun, “A 9-31-GHz subharmonic passive mixer in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 10, pp. 2257-2264, Oct. 2006.
[26] H. J. Wei, C. Meng, P. Y. Wu and K. C. Tsung, “K-band CMOS sub-harmonic resistive mixer with a miniature marchand balun on lossy silicon substrate,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 1, pp. 40-42, Jan. 2008.
[27] J. H. Oh, S. W. Moon, D. S. Kang, and S. D. Kim, “High-performance 94-Ghz single-balanced diode mixer using disk-shaped GaAs Schottky diodes,” IEEE Trans. Electron Devices, vol. 30, no. 3, pp. 206-208, Mar. 2009.
[28] V. Trifunovic, and B. Jokanovic, “Star mixer with high port-to-port isolation,” Electron. Lett., vol. 32, no. 24, pp. 2251-2252, Mar. 1996.
[29] T. Y. Yang, W. R. Lien, C. C. Yang, and H. K. Chiou, “A compact V-band star mixer using compensated overlay capacitors in dual baluns,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 537-539, Jul. 2007.
[30] K. S. Ang, M. Chongcbeawcbamnan, and I. D. Robertsou, “Monolithic resistive mixers for 60 GHz direct conversion receivers,” IEEE Radio Frequency Integrated Circuits Symp., 2000, pp 35-38.
[31] A. H. Baree, and I. D. Robertson, “Monolithic MESFET distributed baluns based on the distributed amplifier gate-line termination technique,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 2, pp. 188-195, Feb. 1997.
[32] K. S. Ang, Y. C. Leong, and C. H. Lee, “Multisection impedance-transforming coupled-line baluns,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 536-541, Feb. 2003.
[33] J. Wang, W. Zhang, and Z. Yu, “The design of a planar-spiral transformers balun used in RF/MW based on 0.13 ?m CMOS process,” in Microwave and Millimeter-Wave technology, Apr. 2007, pp. 18-21.
[34] J. X. Liu, C. Y. Hsu, H. R. Chuang, and C. Y. Chen, “A 60-GHz millimeter-wave CMOS Marchand balun,” IEEE Radio Frequency Integrated Circuits Symp., 2007, pp 445-448.
[35] J. C. Park, J. Y. Park, and H. S. Lee, “Fully embedded 2.4 GHz LC-balun into organic package substrate with series resonant tank circuit,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 190-1904.
[36] B. Godara, and A. Fabre, “A highly compact active wideband balun with impedance transformation in SiGe BiCMPS,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 22-30, Jan. 2008.
[37] P. Wu, Y. Zhang, Y. L. Dong, and O. Zhang, “A novel Ka-band plannar balun using microstrip-CPS-microstrip transition,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 3, pp. 136-138, Mar. 2011.
[38] S. S. Kim, J. H. Lee, and K. W. Yeom, “A novel planar dual balun for doubly balanced star mixer,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 9, pp. 440-442, Sep. 2004.
[39] H. K. Chiou, and T. Y. Yang, “Low-loss and broadband asymmetric broadside-coupled balun for mixer design in 0.18-?m CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 835-848, Apr. 2008.
[40] Y. A. Lai, C. N. Chen, Y. H. Chang, and Y. H. Wang, “A planar dual 1800 hybrid using multicoupled line sections,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 2, pp. 68-70, Feb. 2011.
[41] M. E. Goldfarb, J. B. Cole, and A. Platzker, “A novel MMIC biphase modulator with variable gain using enhancement-mode FETs suitable for 3 V wireless applications,” in IEEE Microw. Millimeter-Wave Monolithic Circuits Symp., May 1994, pp. 99-102.
[42] H. Koizumi, S. Nagata, K. Tateoka, K. Kanazawa, and D. Ueda, “A GaAs single balanced mixer MMIC with built-in active balun for personal communication systems,” in IEEE Microw. Millimeter-Wave Monolithic Circuits Symp., May 1995, pp. 77-80.
[43] J. Ryynänen, K. Kivekäs, J. Jussila, A. Pärssinen, and K. A. I. Halonen, “A dual-band RF front-end for WCDMA and SM applications,” IEEE J. Solid-State Circuits, vol. 36, no. 8, pp. 1198-1204, Aug. 2001.
[44] M. Kawashima, T. Nakagawa, and K. Araki, “A novel broadband active balun,” in 33rd Eur. Microw. Conf., Oct. 2003, vol. 2, pp. 495-498.
[45] K. Jung, W. R. Eisenstadt, R. M. Fox, A. W. Ogden, and J. Yoon, “Broadband active balun using combined cascade-cascade configuration,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1790-1796, Aug. 2008.
[46] P. Z. Rao, T. Y. Chang, C. P. Liang, and S. J. Chung, “An ultra-wideband high-linearity CMOS mixer with new wideband active baluns,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 9, pp. 2184-2192, Sep. 2009.
[47] Y. Xuan, and J. L. Fikart, “Computer-aided design of microwave frequency doublers using a new circuit structure,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 12, pp. 2264-2268, Dec. 1993.
[48] H. Ma, S. J. Fang, F. Lin, and H. Nakamura, “Novel active differential phase splitters in RFIC for wireless applications,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2597-2603, Dec. 1998.
[49] C. Viallon, D. Venturin, and T. Parra, “Design of an original K-band active balun with improved broadband balanced behavior,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 4, pp. 280-282, Apr. 2005.
[50] Y. Ji, C. Wang, J. Liu, and H. Liao, “1.8 dB NF 3.6 mW CMOS active balun low noise amplifier for GPS”, Electron. Lett., vol. 46, no. 3, pp. 51-52, Feb. 2010.
[51] A. M. Pavio, R. H. Halladay, S. D. Bingham, and C. A. Sapashe, “Double balanced mixers using active and passive techniques,” IEEE Trans. Microw. Theory Tech., vol. 36, no. 12, pp. 1948-1957, Dec. 1988.
[52] A. H. Baree and I. D. Robertson, “Analysis and design of multi-octave MMIC active baluns using a distributed amplifier gate line termination technique,” in IEEE Microw. Millimeter Wave Monolithic Circuits Symp., Dig., 1995, pp. 217-220.
[53] M. Ferndahl, and H. O. Vickes, “The matrix balun - A transistor-based module for broadband applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp. 53-60, Jan. 2009.
[54] A. M. Pavio, and A. Kikel, “A monolithic or hybrid broad-band compensated balun,” in IEEE MTT-S Int. Microw. Symp. Dig., May 1990, pp. 483-486.
[55] T. N. Ton, G. S. Dow, T. H. Chen, M. Lacon, T. S. Bui, and D. Yang, “An X-band monolithic double double-balanced mixer for high dynamic receiver application,” in IEEE MTT-S Int. Microw. Symp. Dig., May 1990, pp. 197-200.
[56] K. S. Ang, and Y. C. Leong, “Converting baluns into broad-band impedance-transforming 1800 hybrids,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 12, pp. 2739-2745, Dec. 2004.
[57] C. H. Lien, C. H. Wang, C. S. Lin, P. S. Wu, K. Y. Lin, and H. Wang, “Analysis and design of reduced-size Marchand rat-race hybrid for millimeter-wave compact balanced mixers in 130-nm CMOS process,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1966-1977, Aug. 2009.
[58] H. K. Chiou, Y. R. Juang, and H. H. Lin, “Miniature MMIC star double balanced mixer using lumped dual balun,” Electron. Lett., vol. 33, no. 6, pp. 503-505, Mar. 1997.
[59] H. Chiou, H. Lin, and C. Chang, “Lumped-element compensated high/low-pass balun design for MMIC double-balanced mixer,” IEEE Microwave Guided Wave Lett., vol. 7, pp. 248-250, Aug. 1997.
[60] D. Kuylenstierna and P. Linner, “Design of broad-band lumped-element baluns with inherent impedance transformation,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 12, pp. 2739-2745, Dec. 2004.
[61] K. S. Ang, Y. C. Leong, and C. H. Lee, “Analysis and design of miniaturized lumped-distributed impedance-transforming baluns,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 3, pp. 1009-1017, Mar. 2003.
[62] N. Marchand, “Transmission line conversion transformers,” Electron., vol. 17, p. 142, Dec. 1944.
[63] Z. Y. Zhang, Y. X. Guo, L. C. Ong, and M. Y. W. Chia, “A new planar Marchand balun,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2005, pp. 175-178.
[64] M. J. Chiang, H. S. Wu, and C. K. C. Tzuang, “A compact CMOS Marchand balun incorporating meandered multilayer edge-coupled transmission lines,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2009, pp. 125-128.
[65] S. A. Maas and K. W. Chang, “A broadband, planar, doubly balanced monolithic Ka-band diode mixer,” IEEE Trans. Microwave Theory and Tech., vol. 41, no. 12, pp. 2330-2335, Dec.1993.
[66] B. H. Lee, D. S. Park, S. S. Park, and M. C. Park, “Design of new three-line balun and its implementation using multilayer configuration,” IEEE Trans. Microwave Theory and Tech., vol. 54, no. 4, pp. 1405-1414, Apr. 2006.
[67] C. S. Lin, P. S. Wu, M. C. Yeh, J. S. Fu, H. Y. Chang, K. Y. Lin, and H. Wang, “Analysis of multiconductor coupled-line Marchand baluns for miniature MMIC design,” IEEE Trans. Microwave Theory and Tech., vol. 55, no. 6, pp. 1190-1199, Jun. 2007.
[68] R. Schwindt, and C. Nguyen, “Computer-aided analysis and design of a planar multilayer Marchand balun,” IEEE Trans. Microwave Theory and Tech., vol. 42, No. 7, pp. 1429-1434, Jul. 1994.
[69] P. S. Wu, C. S. Lin, T. W. Huang, H. Wang, Y. C. Wang and C. S. Wu, “A millimeter-wave ultra-compact broadband diode mixer using modified Marchand balun,” 2005 European Gallium Arsenide and Other Semiconductor Application Symp., 2005, pp. 349-352.
[70] T. Y. Yang, and H. K. Chiou, “A 16-46 GHz mixer using broadband multilayer balun in 0.18-?m CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 534-536, Jul. 2007.
[71] Y. J. Yoon, Y. Lu, R. C. Frye, and P. R. Smith, “A silicon monolithic spiral transmission line balun with symmetrical design,” IEEE Electron Device Lett., vol. 20, no. 4, pp. 182-184, Apr. 1999.
[72] Y. J. Yoon, Y. Lu, R. C. Frye, M. Y. Lau, P. R. Smith, L. Ahlquist, and D. P. Kossives, “Design and characterization of multilayer spiral transmission-line baluns,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 9, pp. 1841-1847, Sep. 1999.
[73] H. Y. Yu, S. S. Choi, S. H. Kim, and Y. H. Kim, “K-band balun with slot pattern ground for wide operation using 0.18 mm CMOS technology,” Electron. Lett., vol. 43, no. 5, pp. 503-505, Mar. 2007.
[74] M. Kaixue, M. Jianguo, J. Lin, O. Benghwee, S. Y. Kiat, and A. D. Manh, “800 MHz-2.5 GHz miniaturized multi-layer symmetrical stacked baluns for silicon based RF ICs,” IEEE MTT-S Int. Microw. Symp.Dig., Sep. 2005, pp. 283-286.
[75] W. Z. Chen, W. H. Chen, and K. C. Hsu, “Three-dimensional fully symmetric inductors, transformer, and balun in CMOS technology,” IEEE Trans. Circuits Syst. I, vol. 54, no. 7, pp. 1413-1423, Jul. 2007.
[76] Y. C. Lee, C. M. Lin, S. H. Hung, C. C. Su, and Y. H. Wang, “A broadband doubly balanced monolithic ring mixer with a compact intermediate frequency (IF) extraction,” Progress In Electromagnetics Research Letters, vol. 20, pp. 175-184, 2009.
[77] C. M. Lin, Y. C. Lee, S. H. Hung, and Y. H. Wang, “A 28-40 GHz doubly balanced monolithic passive mixer with a compact IF extraction,” Progress In Electromagnetics Research Letters, vol. 9, pp. 59-66, 2010.
[78] C. H. Lin, H. Z. Liu, C. K. Chu, H. K. Huang, C. C. Liu, and C. H. Chang, “A ku/k-band PHEMT diode single-balanced mixer,” in Solid-State Integrated Circuit Technol. Conf., Oct. 2006, pp. 884-886.
[79] J. Guo, Z. Xu, C. Qian, and W. Dou, “Design of a microstrip balanced mixer for satellite communication,” Progress In Electromagnetics Research, vol. 115, pp. 289-301, 2011.
|