博碩士論文 975201107 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.119.120.59
姓名 邱垣達(Yuan-Ta Chiu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究
(Research on Low Power Low Phase Noise Differential and Quadrature Monolithic Microwave Integrated Circuit VCOs)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 高功率高效率放大器與振盪器研製★ 微波與毫米波寬頻主動式降頻器
★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用★ 寬頻主動式半循環器與平衡器研製
★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製★ 銻化物異質接面場效電晶體之研製及其微波切換器應用
★ 微波毫米波寬頻振盪器與鎖相迴路之研製★ 使用達靈頓對之單晶微波及毫米波寬頻電路
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現代通訊系統中,低相位雜訊的壓控振盪器是不可或缺的元件,由於高資料傳輸量的需求,促使我們研究高頻的通訊系統。因此,如何設計高頻率並同時具有低相位雜訊的振盪器是一個值得探討的重點。另外,四相位的振盪器也常被用在直接轉換的收發機系統中,本論文中也針對如何直接量測四相位壓控振盪器之振幅及相位誤差作了探討。
本論文的主題在於使用互補式金氧半場效電晶體及鉮化鎵異質接面假晶格高電子移動率電晶體製程,設計並實現微波及毫米波振盪器,研究的方向著重在應用於K頻段的低功耗、低相位雜訊差動及四相位壓控振盪器。論文主要可分為四大部分,第一部份介紹振盪器之設計參數、理論及應用於共振腔中的被動元件之設計。第二部分提出了新型具有低功耗及低相位雜訊的差動振盪器。第三部分則探討使用鉮化鎵異質接面假晶格高電子移動率電晶體製程來設計考畢茲振盪器之優缺點。論文的最後一部分主要在介紹四相位振盪器的原理、應用及架構,並且提出新型的四相位振盪器,同時說明其設計概念及直接量測相位、振幅誤差的方法。
首先我們使用台積電90奈米CMOS製程實現了K頻段使用變壓器回授及電流再利用架構之壓控振盪器。量測結果顯示,此電路振盪頻率可調範圍為21.3 ~ 20.3 GHz,並且在1-MHz偏移時的相位雜訊為-116.4 dBc/Hz,功率消耗為3毫瓦,輸出功率為-16 dBm,並且僅佔用0.36 mm2的晶片面積,優位指數(FOM)為-198 dBc/Hz。此晶片也可經由雷射切割來修改其振盪頻率,切割後的電路振盪頻率為25.1 ~ 23.6 GHz,並且在1-MHz位移時的相位雜訊為-120 dBc/Hz,功率消耗為6.9毫瓦,輸出功率為-12 dBm,優位指數(FOM)為-199.4 dBc/Hz。
接下來是使用穩懋鉮化鎵異質接面假晶格高電子移動率電晶體製程所設計的考畢茲壓控振盪器。總共討論了三種使用不同回授的電路架構,包含使用變壓器回授、不使用變壓器回授、同時使用變壓器回授及閘極電感回授等。量測結果說明變壓器回授應用在考畢茲振盪器上會造成反效果,所以建議在設計時使用閘極電感回授即可。三個電路的晶片面積皆為1 mm2,與CMOS製程比較起來,使用此製程之振盪器具有較高的輸出功率及效率。
最後一部分為使用台積電90奈米CMOS製程來實現的新型K頻段四相位壓控振盪器,此電路採用融合了第一部分差動振盪器的優點並且採用串聯耦合形式,所以能達到非常低的功耗。量測結果顯示,此電路振盪頻率可調範圍為20.6 ~ 21.2 GHz,並且在1-MHz偏移時的相位雜訊為-117.2 dBc/Hz,功率消耗為6.3毫瓦,輸出功率為-15 dBm,相位及振幅誤差分別為4度及0.6 dB,優位指數(FOM)為-195.6 dBc/Hz,並且僅佔用0.77 mm2的晶片面積。
摘要(英) In modern communication systems, voltage-controlled oscillator (VCO) is an in-dispensable building block. Since the demand for high data transmission rate is increas-ing, we were driven to investigate high-frequency communication systems. Therefore, how to design a high-frequency and low phase noise VCO is an important issue to be explored. In addition, since a quadrature VCO (QVCO) is commonly used in the di-rect-conversion transceivers we also discussed the measurement method of phase and amplitude error.
Our researches were focused on using CMOS and GaAs PHEMT processes to de-sign and realize microwave and millimeter-wave VCOs and the circuit design was fo-cused on K-band low power and low phase noise differential and quadrature VCOs. There are four parts in the thesis. In the first part, the design parameters, oscillator the-ory, and the design of passive components in an LC-tank were introduced. In the second part, we proposed an innovative low power low phase noise differential VCO. In the third part, the pros and cons of using GaAs PHEMT process to design the Colpitts VCOs were investigated. In the last part, operation principles, application and topologies of QVCOs were introduced, an innovative QVCO was proposed, and the measurement method of phase and amplitude error was explained as well.
Firstly, we used TSMC 90 nm CMOS process to realize a K-band VCO with transformer-feedback and current-reused techniques. The measured results showed that the oscillation frequency can be tuned from 21.3 to 30.3 GHz. The phase noise is -116.4 dBc/Hz at 1-MHz offset. The dc power consumption is 3 mW and the output power is -16 dBm. The chip size is only 0.36 mm2. The VCO demonstrated a Figure of Merit (FOM) of -198 dBc/Hz. This chip can also be laser-cut to modify its oscillation fre-quency. After being laser-cut, the oscillation frequency can be tuned from 25.1 to 23.6 GHz. The phase noise is -120 dBc/Hz at 1-MHz offset. The dc power consumption is 6.9 mW and the output power is -12 dBm. The laser-cut VCO demonstrated a FOM of -199.4 dBc/Hz.
Secondly, we used WIN GaAs PHEMT process to design Colpitts VCOs including three circuits with different feedback topologies. These are the modified VCOs with transformer feedback, without transformer feedback, and with transformer and gate in-ductive feedback. The measured results showed that applying transformer-feedback technique to the Colpitts oscillator will cause counter effect. Therefore, the Colpitts os-cillator with gate inductive feedback only was recommended if large bandwidth is pre-ferred. Each of three chips occupies a chip size of 1 mm2. Compared to the CMOS pro-cess, the VCO using this process has larger output power and efficiency.
Finally, we used TSMC 90 nm CMOS process to realize an innovative K-band QVCO. This circuit was based on the differential version of previously proposed CMOS VCO and adopted the bottom-series coupling topology. Therefore, ultra-low power consumption was achieved. The measured results showed that the oscillation frequency can be tuned from 20.6 to 21.2 GHz. The phase noise is -117.2 dBc/Hz at 1-MHz offset. The dc power consumption is 6.3 mW and the output power is -15 dBm. The minimum I/Q phase and amplitude error are 4° and 0.6 dB, respectively. The QVCO demonstrated a FOM of -195.6 dBc/Hz. The chip size is only 0.77 mm2.
關鍵字(中) ★ 四相位壓控振盪器
★ 低相位雜訊
★ 單晶微波積體電路
★ 低功耗
★ 互補式金氧半場效電晶體
★ 異質接面假晶格高電子移動率電晶體
關鍵字(英) ★ complementary metal oxide semiconductor (CMOS)
★ monolithic microwave integrated circuit (MMIC)
★ PHEMT
★ low phase noise
★ quadrature voltage-controlled oscillator (QVCO)
★ Low power
★ pseudomorphic high electron mobility transistor
論文目次 Abstract..................................................................III
Acknowledgements............................................................V
List of Figures............................................................XI
List of Tables..........................................................XXIII
Chapter 1 Introduction.....................................................1
1.1 Motivation...........................................................1
1.2 Literatures Survey...................................................2
1.3 Contributions........................................................4
1.4 Thesis Overview......................................................5
Chapter 2 Basics of Voltage-Controlled Oscillators.........................7
2.1 Introduction.........................................................7
2.1.1 Frequency Tuning.................................................7
2.1.2 VCO Gain.........................................................9
2.1.3 Load Pulling and Supply Pushing..................................9
2.1.4 Definition of Phase Noise.......................................10
2.1.5 Importance of Phase Noise.......................................12
2.1.6 Other Specifications............................................16
2.1.7 VCO's Figure of Merits..........................................17
2.1.8 Output Buffers..................................................18
2.2 Oscillator Theory...................................................19
2.2.1 Barkhausen Criteria.............................................19
2.2.2 Negative-Resistance Oscillators Analysis........................20
2.3 Tank Properties.....................................................22
2.3.1 Q Definitions...................................................23
2.3.2 LC-Tank.........................................................24
2.4 Leeson's Empirical Phase Noise Model................................26
2.5 Passive Components..................................................30
2.5.1 Inductors.......................................................30
2.5.2 Transformers....................................................41
2.5.3 Capacitors......................................................49
2.5.4 Varactors.......................................................50
Chapter 3 Design and Analysis of Current-Reused Transformer-Feedback VCO..55
3.1 Introduction........................................................55
3.2 Analysis and Design.................................................59
3.3 Measurement and Discussions.........................................83
3.4 Summary.............................................................95
Chapter 4 Design and Analysis of the Modified Colpitts VCOs...............97
4.1 Introduction........................................................97
4.2 Analysis and Design.................................................99
4.3 Measurement and Discussions........................................118
4.4 Summary............................................................129
Chapter 5 A K-Band Low-Power Low-Phase-Noise Quadrature VCO..............131
5.1 Introduction.......................................................131
5.1.1 Generation of LO Signals with Quadrature Phase.................133
5.1.2 Active Coupling................................................135
5.1.3 Passive Coupling...............................................152
5.1.4 Measurement Method of Phase and Amplitude Error................155
5.2 Circuit Design.....................................................164
5.3 Measurement and Discussions........................................179
5.4 Summary............................................................191
Chapter 6 Conclusions....................................................193
Bibliography..............................................................195
Publications..............................................................205
參考文獻 [1] K. C. Kwok and H. C. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 652–660, Mar. 2005.
[2] Y. Seok-Ju, S. So-Bong, C. Hyung-Chul, and L. Sang-Gug, “A 1mW current-reuse CMOS differential LC-VCO with low phase noise,” in IEEE ISSCC Tech. Dig., vol. 1, pp. 540–616, Feb. 2005.
[3] Ali Hajimiri and Thomas H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717–724, May 1999.
[4] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC oscillator,” CICC, pp. 569–572, May 2000.
[5] C. Hung, K. K. O, “Fully integrated 5.35-GHz CMOS VCOs and prescalers,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 1, Jan. 2001.
[6] Sonnet Software Inc., Sonnet User’s Manual, Release 13, North Syracuse, NY, Jun. 2011.
[7] M. Danesh, J. R. Long, R. A. Hadaway, and D. L. Harame, “A Q-factor enhancement technique for MMIC inductors,” in Proc. IEEE Radio and Frequency Integrated Circuits (RFIC) Symp., pp. 217–220, 1998.
[8] Yi-Hsien Cho, Design of Microwave and Millimeter-wave CMOS VCOs, M.S. thesis, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, R.O.C., 2005.
[9] Yan-Liang Yeh, Hong-Yeh Chang, and Chau-Ching Chiong, “A 29-GHz low phase noise differential voltage controlled oscillator using 2-μm GaAs HBT process,” in 2008 Asia Pacific Microwave Conference Proceedings, Hong Kong/Macau, China, Dec. 2008.
[10] T. H. Huang and P. L. You, “27-GHz low phase-noise CMOS standing-wave oscillator for millimeter wave applications,” in 2008 IEEE MTT-S International Microwave Symposium Digest, pp. 367–370, 2008.
[11] C. C. Li, T. P. Wang, C. C. Kuo, M. C. Chuang, and H. Wang, “A 21 GHz complementary transformer coupled CMOS VCO,” IEEE Microwave and Wireless Comp. Letters, vol. 18, no. 4, pp. 278–280, Apr. 2008.
[12] Yen-Hung Kuo, Jeng-Han Tsai, and Tian-Wei Huang, “A 1.7-mW, 16.8% frequency tuning, 24-GHz transformer-based LC-VCO using 0.18-μm CMOS technology,” IEEE RFIC Symp. Dig., pp. 79–82, Boston, Jun. 2009.
[13] Chi-Kai Hsieh, Kun-Yao Kao, Jeffrey Ronald Tseng, and Kun-You Lin, “A K-band CMOS low power modified Colpitts VCO using transformer feedback,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 1293–1296, Boston, Jun. 2009.
[14] Sheng-Lyang Jang, Chien-Feng Lee, Chia-Wei Chang, “A K-band differential Colpitts cross-coupled VCO in 0.13 μm CMOS,” Solid-State Electronics, vol. 53, iss. 9, pp. 931–934, Sept. 2009.
[15] Chieh-An Lin, Jing-Lin Kuo, Kun-You Lin, and Huei Wang, “A 24 GHz low power VCO with transformer feedback,” IEEE RFIC Symp. Dig., pp. 75–78, Boston, Jun. 2009.
[16] Hong-Yeh Chang, Yi-Shuo Wu, and Yu-Chi Wang, “A 38% tuning bandwidth low phase noise differential voltage controlled oscillator using a 0.5 μm E/D-PHEMT process,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 07, pp. 467–469, July 2009.
[17] Jaemo Yang, Choul-Young Kim, Dong-Wook Kim, and Songcheol Hong, “Design of a 24-GHz CMOS VCO with an asymmetric-width transformer,” IEEE Transactions on Circuits and Systems—II, vol. 57, no. 3, pp. 173–177, Mar. 2010.
[18] Szu-Ling Liu, Kuan-Han Chen, Tsu Chang, and Albert Chin, “A low-power K-band CMOS VCO with four-coil transformer feedback,” IEEE Microwave and Wireless Comp. Letters, vol. 20, no.8 , pp. 459–461, Aug. 2010.
[19] Sheng-Lyang Jang, Cheng-Chen Liu, Yi-Jhe Song, and M.-H. Juang, “A low voltage balanced Clapp VCO in 0.13 μm CMOS technology,” Microwave and Optical Technology Letters, vol. 52, no. 7, pp. 1623–1625, July 2010.
[20] Jose´ Cruz Nunez–Perez, JacquesVerdier, and ChristianGontrand, “Design of 20 GHz high performance LC-VCOs in a 52 GHz fT SiGe:C BiCMOS technology,” Microelectronics Journal, vol. 41, iss. 1, pp. 41–50, Jan. 2010.
[21] C. M. Yang, H. L. Kao, Y. C. Chang, M. T. Chen, H. M. Chang, and C. H. Wu, “A low phase noise 20 GHz voltage control oscillator using 0.18-μm CMOS technology,” 2010 IEEE Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS 2010), pp. 185–188, Apr. 2010.
[22] J. H. C. Zhan, J. S. Duster, K. T. Kornegay, “A comparative study of MOS VCOs for low voltage high performance operation,” islped, pp. 244–247, Proceedings of the 2004 International Symposium on Low Power Electronics and Design (ISLPED’04), 2004.
[23] Hsieh-Hung Hsieh and Liang-Hung Lu, “A high-performance CMOS voltage-controlled oscillator for ultra-low-voltage operations,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 3, pp. 467–473, Mar. 2007.
[24] A. Hajimiri and T. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179–194, Feb. 1998.
[25] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuits, vol. 27, pp. 810–820, May 1992.
[26] A. Hajimiri and T. H. Lee, The Design of Low Noise Oscillators, Norwell, MA: Kluwer, 2000.
[27] H. Li, H. M. Rein, T. Suttorp and J. Bock, “Fully integrated SiGe VCOs with powerful output buffer for 77-GHz automotive radar systems and applications around 100 GHz,” IEEE J. Solid-State Circuits, vol. 39, no. 10, pp. 1650–1658, Oct. 2004.
[28] WIN Semiconductors, 0.5μm InGaAs pHEMT Enhancement/Depletion-Mode Device (E/D-Mode) Device Model Handbook, ver. 1.5.0, Sept. 2010.
[29] J.-A. Hou and Y.-H. Wang, “A 7.9 GHz low-power PMOS Colpitts VCO using the gate inductive feedback,” IEEE Microwave Wireless Compon. Lett., vol. 20, no 4, pp. 223–225, Apr. 2010.
[30] Rui Murakami, Kenichi Okada, and Akira Matsuzawa, “A 484-μm2 21-GHz LC-VCO beneath a stacked-spiral inductor,” IEEE MTT-S European Microwave Conference (EuMC), Paris, France, pp.1615–1618, Sept. 2010.
[31] Chi-Kai Hsieh, Design of Microwave and Millimeter-wave CMOS VCOs, M.S. thesis, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, R.O.C., 2008.
[32] B. Razavi, RF Microelectronics, Prentice Hall, 1998.
[33] F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 873–887, Jun. 2001.
[34] M. S. J. Steyaert, J. Janssens, B. De Muer, M. Borremans, and N. Itoh, “A 2-V CMOS cellular transceiver front-end,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1895–1907, Dec. 2000.
[35] A. Ravi1, K. Soumyanath, L. R. Carley, and R. Bishop, “An integrated 10/5 GHz injection-locked quadrature LC VCO in a 0.18 μm digital CMOS process,” in Proc. IEEE Eur. Solid-State Circuits Conf., pp. 543–546, Sept. 2002.
[36] A. Rofougaran, G. Chang, J. J. Rael, J. Y.-C. Chang, M. Rofougaran, P. J. Chang, M. Djafari, J. Min, E. W. Roth, A. A. Abidi, and H. Samueli, “A single-chip 900-MHz spread-spectrum wireless transceiver in 1-μm CMOS—Part I: Architecture and transmitter design,” IEEE J. Solid-State Circuits, vol. 33, no. 4, pp. 515–534, Apr. 1998.
[37] M. Tiebout, “Low-power low-phase-noise differentially tuned quadrature VCO design in standard CMOS,” IEEE J. Solid-State Circuits, vol. 36, no. 7, pp. 1018–1024, July 2001.
[38] P. Andreani, “A 2 GHz, 17% tuning range quadrature CMOS VCO with high figure-of-merit and 0.6° phase error,” in Proc. IEEE Eur. Solid-State Circuits Conf., Sept. 2002, pp. 815–818.
[39] P. Andreani, A. Bonfanti, L. Romanò, and C. Samori, “Analysis and design of a 1.8-GHz CMOS LC quadrature VCO,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1737–1747, Dec. 2002.
[40] Sander L. J. Gierkink, Salvatore Levantino, Robert C. Frye, Carlo Samori and Vito Boccuzzi, “A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling,” IEEE J. Solid-State Circuits, vol. 38, no.7, pp. 1148–1154, July 2003.
[41] S. B. Shin, H. C. Choi, and S.-G. Lee, “Source-injection parallel coupled LC-QVCO,” Electron. Lett., vol. 39, no. 14, pp. 1059–1060, July 2003.
[42] Abumoslem Jannesari and Mahmoud Kamarei, “Source-injection serial coupled CMOS LC quadrature VCO,” IEICE Electron. Express, vol. 4, no. 14, pp. 467–471, 2007.
[43] H. Kim, C. Cha, S. Oh, M. Yang and S. Lee, “A very low-power quadrature VCO with back-gate coupling,” IEEE J. Solid-State Circuits, vol. 39, no.6, pp. 952–955, Jun. 2004.
[44] Shuenn-Yuh Lee, Liang-Hung Wang, and Yu-Heng Lin, “A CMOS quadrature VCO with subharmonic and injection-locked techniques,” IEEE Transactions on Circuits and Systems—II: Express Briefs, vol. 57, no. 11, pp. 843–847, Nov. 2010.
[45] S.J. Yun, D.Y. Yoon, and S.G. Lee, ‘‘A complementary CMOS LC quadrature oscillator,” IEICE Trans. Electronics, vol. E91-C, no.11, pp. 1806–1810, Nov. 2008.
[46] K.-W. Cheng and D. J. Allstot, “A gate-modulated CMOS LC quadrature VCO,” IEEE RFIC Symp. Dig., pp. 267–270, Boston, Jun. 2009.
[47] Fredrik Tillman, Niklas Troedsson and Henrik Sjöland, “A 1.2 volt 1.8GHz CMOS quadrature front-end,” in Symp. VLSI Circuits Dig. Tech. Papers, pp. 362–365, Jun. 2004.
[48] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang and M.-H. Juang, “A low-voltage quadrature CMOS VCO based on voltage-voltage feedback topology,” IEEE Microw. Wireless Components Lett., vol. 16, no. 12, pp. 696–698, Dec. 2006.
[49] A. W. L. Ng and H. C. Luong, “A 1-V 17-GHz 5-mW CMOS quadrature VCO based on transformer coupling,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1933–1941, Sept. 2007.
[50] Chung-Ting Lu, Hsieh-Hung Hsieh, and Liang-Hung Lu, “A low-power quadrature VCO and its application to a 0.6-V 2.4-GHz PLL,” IEEE Transactions on Circuits and Systems—I: Regular Papers, vol. 57, no. 4, pp. 793–802, Apr. 2010.
[51] T. Yu and G. M. Rebeiz, “A 24 GHz 4-channel phased-array receiver in 0.13 μm CMOS,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Conf., pp. 361–364, Jun. 2008.
[52] A. Hajimiri, H. Hashemi, A. Natarajan, X. Guan, and A. Komijani, “Integrated phased array systems in silicon,” Proceedings of the IEEE, vol. 93, no. 9, pp. 1637–1655, Sept. 2005.
[53] A. Afsahi, et al., “A low-power single-weight-combiner 802.11abg SoC in 0.13 μm CMOS for embedded applications utilizing an area and power efficient Cartesian phase shifter and mixer circuit,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1101–1118, May 2008.
[54] K. Scheir, S. Bronckers, J. Borremans, P. Wambacq, and Y. Rolain, “A 52 GHz phased-array receiver frond-end in 90 nm digital CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2651–2659, Dec. 2008.
[55] G. Huang, S.-K. Kim, Z. Gao, H. Ma, V. Fusco, and B.-S. Kim, “Sixteen-phase CMOS millimetre-wave voltage-controlled oscillator,” IET Microw. Antennas Propag., vol. 4, iss. 12, pp. 2057–2061, Mar. 2010.
[56] J. Cabanillas, J. M. Lopez-Villegas, and G. M. Rebeiz, “A 900 MHz low phase noise CMOS quadrature oscillator,” IEEE RFIC Symp., Seattle, Washington, USA, pp. 63–66, 2002.
[57] J. Chang and C. K. Kim, “A symmetrical 6-GHz fully integrated cascode coupling CMOS LC quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 670–672, Oct. 2005.
[58] H. Choi, S. B. Shin, and S. Lee, “A low-phase noise LC-QVCO in CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 11, pp. 540–542, Nov. 2004.
[59] J. P. Hong, S. J. Yun, N. J. Oh, and S. G. Lee, “A 2.2-mW backgate coupled LC quadrature VCO with current reused structure,” IEEE Microw. Wireless Compon. Lett., vol. 17, pp. 298–300, Apr. 2007.
[60] L. Romano and S. Levantino, “Phase noise and accuracy in quadrature oscillators,” IEEE ISCAS, pp. 161–164, May 2004.
[61] Sabine Hackl, Josef Böck, Günter Ritzberger, Martin Wurzer, and Arpad L. Scholtz, “A 28-GHz monolithic integrated quadrature oscillator in SiGe bipolar technology,” IEEE J. Solid-State Circuits, vol. 38, pp. 135–137, Jan. 2003.
[62] Frank Ellinger and Heinz Jackel, “38-43 GHz quadrature VCO on 90nm VLSI CMOS with feedback frequency tuning,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2005, pp. 1701–1703.
[63] A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900-MHz CMOS LC-oscillator with quadrature outputs,” in Proc. ISSCC’96 Conf., Feb. 1996, pp. 392–393.
[64] D. Guermandi, P. Tortori, E. Franchi and A. Gundi, “A 0.83–2.5-GHz continuously tunable quadrature VCO,” IEEE J. Solid-State Circuits, vol. 40, pp. 2620–2627, Dec. 2005.
[65] Y. C. Chang, Y. C. Hsu, S. G. Lin, Y. Z. Juang, and H. K. Chiou, “On-wafer single contact quadrature accuracy measurement using receiver mode in four-port vector network analyzer,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 371–374, 2008.
[66] “Optimization of quadrature modulator performance,” Technical Notes and Articles, RF Micro Devices Inc.
[67] M. Törmänen and H. Sjöland, “A 26-GHz LC-QVCO in 0.13-μm CMOS,” Proc. 2007 Asia Pacific Microwave Conference, vols 1-5, APMC 2007, Bangkok, Thailand, pp. 1769–1772.
[68] M. Törmänen and H. Sjöland, “A 24-GHz LC-QVCO in 130-nm CMOS using 4-bit switched tuning,” Proc. 2008 IEEE International Conference on Microelectronics, ICM 2008, Sharjah, United Arab Emirates, pp. 462–465.
[69] C.-Y. Kim, J. Yang, D.-W. Kim, and S. Hong, “A K-band quadrature VCO based on asymmetric coupled transmission lines,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 363–366, Jun. 2008.
[70] M. Hossain and A.C. Carusone, “20 GHz low power QVCO and de-skew techniques in 0.13μm digital CMOS,” in Proc. IEEE Custom Integrated Circuits Conf., pp. 447–450, Sept. 2008.
[71] M. Törmänen and H. Sjöland, “A 24-GHz quadrature receiver front-end in 90-nm CMOS,” Proc. 2009 IEEE Asia Pacific Microwave Conference, APMC 2009, Singapore, pp. 1152–1155.
[72] S. Ko, J.-G. Kim, T. Song, E. Yoon, and S. Hong, “20 GHz integrated CMOS frequency sources with a quadrature VCO using transformers,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 269–272, Jun. 2004.
[73] M. Sanduleanu and E. Stikvoort, “Highly linear, varactor-less, 24GHz IQ oscillator,” in IEEE RFIC Symp. Dig., pp. 577–580, Jun. 2005.
[74] R. M. Kodkani and L. E. Larson, “A 25 GHz quadrature voltage controlled ring oscillator in 0.12 μm SiGe HBT,” Silicon Monolithic Integrated Circuits in RF Systems, pp. 18–20, Jan. 2006.
[75] Wei-Min Lance Kuo, John D. Cressler, Yi-Jan Emery Chen, and Alvin J. Josep, “A compact 21 GHz inductorless differential quadrature ring oscillator implemented in SiGe HBT technology,” Materials Science in Semiconductor Processing, vol. 8, issues 1-3, pp. 445–449, Feb. 2005.
[76] B. Razavi, Design of Integrated Circuits for Optical Communication, McGrawHill Inc., 2003.
[77] M. Tiebout, Low Power VCO Design in CMOS, Springer, 2006.
[78] J. Craninckx and M. Steyaert, Wireless CMOS Frequency Synthesizer Design, Kluwer, London, 1998.
[79] V. Radisic X.B. Mei, W.R. Deal, W. Yoshida, P.H. Liu, J. Uyeda, M. Barsky, L. Samoska, A. Fung, T. Gaier, and R. Lai, “Demonstration of sub-millimeter wave fundamental oscillators using 35-nm InP HEMT technology,” IEEE Microwave Wireless Components Lett., vol. 17, no. 5, pp. 223–225, Mar. 2007.
[80] E. Seok, C. Changhua, S. Dongha D.J. Arenas, D.B. Tanner, H. Chin-Ming, and K.O. Kenneth, “A 410 GHz CMOS push-push oscillator with an on-chip patch antenna,” in Proc. Int. Solid-State Circuits Conf. (ISSCC), 2008, pp. 472–473.
[81] S.-A. Yu and P. R. Kiget, “Scaling LC oscillators in nanometer CMOS technologies to a smaller area but with constant performance,” in IEEE Transactions on Circuits and Systems-II, vol. 56, no. 5, May 2009, pp. 354–358.
[82] G. Gonzalez, Microwave Transistor Amplifier: Analysis and Design, 2nd edition, Prentice Hall, Upper Saddle River, New Jersey 07458, 1997.
[83] D. M. Pozar, Microwave Engineering, 2nd edition, John Wiley & Sons, Aug. 1997.
[84] H.J. De Los Santos, RF MEMS Circuit Design for Wireless Communications, Artech House, 2002.
[85] K. O, “Estimation methods for quality factors of inductors fabricated in silicon integrated circuit process technologies,” IEEE J. Solid-State Circuits, vol. 33, pp. 1249–1252, Aug. 1998.
[86] R. Thuringer, Characterization of Integrated Lumped Inductors and Transformers, M.S. thesis, TU-Wien, Institut fur Nachrichten- und Hochfrequenztechnik, 2002.
[87] Haitao Gan, On-Chip Transformer Modeling, Characterization, and Applications in Power and Low Noise Amplifiers, Ph.D. dissertation, Department of Electrical Engineering and Committee on Graduate Studies of Stanford University, 2006.
[88] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, pp. 1368–1382, Sept. 2000.
[89] A. Zolfaghari, A. Chan and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, pp. 620–628, Apr. 2001.
[90] S. S. Mohan, The Design, Modeling and Optimization of On-Chip Inductor and Transformer Circuits, Ph.D. dissertation, Stanford University, Stanford, 1999.
[91] W. Simburger, H. D. Wohlmuth, and P. Weger, “A monolithic 3.7W silicon power amplifier with 59% PAE at 0.9GHz,” IEEE J. Solid-State Circuits, vol. 34, pp. 1881–1892, Dec. 1999.
[92] N. A. Talwalkar, Integrated CMOS Transmit-Receive Switch Using On-Chip Spiral Inductors, Ph.D. dissertation, Stanford University, Stanford, Dec. 2003.
[93] C. P. Yue and S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF ICs,” IEEE J. Solid-State Circuits, vol. 33, pp. 743–752, May 1998.
[94] A. E. Ruehli, “Equivalent circuit models for three-dimensional multiconductor systems,” IEEE Trans. Microwave Theory and Techniques, vol. 22, pp. 216–221, Mar. 1974.
[95] Ansoft Corp., Maxwell 2D Parameter Extractor User's Reference, 2001.
[96] A.Kral, F. Behbahani, and A. A. Abidi, “RF-CMOS oscillators with switched tuning,” IEEE Custom Integrated Circuits Conference, pp. 555–558, 1998.
[97] Hooman Darabi and Asad A. Abidi, “A 4.5-mW 900-MHz CMOS receiver for wireless paging,” IEEE J. Solid-State Circuits, vol. 35, no. 8, pp. 1085–1096, Aug. 2000.
[98] R. Aparicio and A. Hajimiri, “Capacity limits and matching properties of integrated capacitors,” IEEE J. Solid-State Circuits, vol. 37, pp. 384–393, Mar. 2002.
[99] H. Samavati, A. Hajimiri, R. Shahani, G.N. Nasserbakht, and T. H. Lee, “Fractal capacitors,” IEEE J. Solid-State Circuits, vol. 33, pp. 2035–2041, Dec. 1998.
[100] H. Diahanshahi, N. Saniei, S. P. Voinigescu, M. C. Maliepaard, and C. A. T. Salama, “A 20-GHz InP-HBT voltage-controlled oscillator with wide frequency tuning range,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 9, pp. 1566–1572, Sept. 2001.
[101] D. Baek, S. Ko, J. G. Kim, D. W. Kim, and S. Hong, “Ku-band InGaP-GaAs HBT MMIC VCOs with balanced and differential Topologies,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1353–1359, Apr. 2004.
[102] K. Tsutsumi, Miki Kagano, and Noriharu Suematsu, “A double tuned Ku-band SiGe-MMIC VCO with variable feed-back capacitor,” APMC Proceedings, Dec. 2006, pp. 1118–1127.
[103] B. Jung and R. Harjani, “High-frequency LC VCO design using capacitive degeneration,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2359–2370, Dec. 2004.
[104] C. K. Chiu, Design and Realization of CMOS RF Frequency Synthesizer, M.S. Thesis, Graduate Institute of Electrical Engineering, National Taiwan University, 2000.
[105] Hong-Yeh Chang, Yi-Hsien Cho, Ming-Fong Lei, Chin-Shen Lin, Tian-Wei Huang, and Huei Wang, “A 45-GHz quadrature voltage controlled oscillator with a reflection-type IQ modulator in 0.13 μm CMOS technology,” 2006 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, Jun. 2006, pp. 739–742.
[106] S. Saberi and J. Paramesh, “A 11.5-22GHz dual-resonance transformer-coupled quadrature VCO,” IEEE Radio Frequency Integrated Circuits Symp., Jun. 2011.
[107] Hyun Seok Choi, Quang Diep Bui, and Chul Soon Park, “A low-power CMOS VCO for 2.4GHz WLAN,” IEEE Compound Semiconductor Integrated Circuit (CSIC) Symposium, pp. 1–4, Oct. 2007.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2011-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明