參考文獻 |
[1] K. C. Kwok and H. C. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 652–660, Mar. 2005.
[2] Y. Seok-Ju, S. So-Bong, C. Hyung-Chul, and L. Sang-Gug, “A 1mW current-reuse CMOS differential LC-VCO with low phase noise,” in IEEE ISSCC Tech. Dig., vol. 1, pp. 540–616, Feb. 2005.
[3] Ali Hajimiri and Thomas H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717–724, May 1999.
[4] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC oscillator,” CICC, pp. 569–572, May 2000.
[5] C. Hung, K. K. O, “Fully integrated 5.35-GHz CMOS VCOs and prescalers,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 1, Jan. 2001.
[6] Sonnet Software Inc., Sonnet User’s Manual, Release 13, North Syracuse, NY, Jun. 2011.
[7] M. Danesh, J. R. Long, R. A. Hadaway, and D. L. Harame, “A Q-factor enhancement technique for MMIC inductors,” in Proc. IEEE Radio and Frequency Integrated Circuits (RFIC) Symp., pp. 217–220, 1998.
[8] Yi-Hsien Cho, Design of Microwave and Millimeter-wave CMOS VCOs, M.S. thesis, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, R.O.C., 2005.
[9] Yan-Liang Yeh, Hong-Yeh Chang, and Chau-Ching Chiong, “A 29-GHz low phase noise differential voltage controlled oscillator using 2-μm GaAs HBT process,” in 2008 Asia Pacific Microwave Conference Proceedings, Hong Kong/Macau, China, Dec. 2008.
[10] T. H. Huang and P. L. You, “27-GHz low phase-noise CMOS standing-wave oscillator for millimeter wave applications,” in 2008 IEEE MTT-S International Microwave Symposium Digest, pp. 367–370, 2008.
[11] C. C. Li, T. P. Wang, C. C. Kuo, M. C. Chuang, and H. Wang, “A 21 GHz complementary transformer coupled CMOS VCO,” IEEE Microwave and Wireless Comp. Letters, vol. 18, no. 4, pp. 278–280, Apr. 2008.
[12] Yen-Hung Kuo, Jeng-Han Tsai, and Tian-Wei Huang, “A 1.7-mW, 16.8% frequency tuning, 24-GHz transformer-based LC-VCO using 0.18-μm CMOS technology,” IEEE RFIC Symp. Dig., pp. 79–82, Boston, Jun. 2009.
[13] Chi-Kai Hsieh, Kun-Yao Kao, Jeffrey Ronald Tseng, and Kun-You Lin, “A K-band CMOS low power modified Colpitts VCO using transformer feedback,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 1293–1296, Boston, Jun. 2009.
[14] Sheng-Lyang Jang, Chien-Feng Lee, Chia-Wei Chang, “A K-band differential Colpitts cross-coupled VCO in 0.13 μm CMOS,” Solid-State Electronics, vol. 53, iss. 9, pp. 931–934, Sept. 2009.
[15] Chieh-An Lin, Jing-Lin Kuo, Kun-You Lin, and Huei Wang, “A 24 GHz low power VCO with transformer feedback,” IEEE RFIC Symp. Dig., pp. 75–78, Boston, Jun. 2009.
[16] Hong-Yeh Chang, Yi-Shuo Wu, and Yu-Chi Wang, “A 38% tuning bandwidth low phase noise differential voltage controlled oscillator using a 0.5 μm E/D-PHEMT process,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 07, pp. 467–469, July 2009.
[17] Jaemo Yang, Choul-Young Kim, Dong-Wook Kim, and Songcheol Hong, “Design of a 24-GHz CMOS VCO with an asymmetric-width transformer,” IEEE Transactions on Circuits and Systems—II, vol. 57, no. 3, pp. 173–177, Mar. 2010.
[18] Szu-Ling Liu, Kuan-Han Chen, Tsu Chang, and Albert Chin, “A low-power K-band CMOS VCO with four-coil transformer feedback,” IEEE Microwave and Wireless Comp. Letters, vol. 20, no.8 , pp. 459–461, Aug. 2010.
[19] Sheng-Lyang Jang, Cheng-Chen Liu, Yi-Jhe Song, and M.-H. Juang, “A low voltage balanced Clapp VCO in 0.13 μm CMOS technology,” Microwave and Optical Technology Letters, vol. 52, no. 7, pp. 1623–1625, July 2010.
[20] Jose´ Cruz Nunez–Perez, JacquesVerdier, and ChristianGontrand, “Design of 20 GHz high performance LC-VCOs in a 52 GHz fT SiGe:C BiCMOS technology,” Microelectronics Journal, vol. 41, iss. 1, pp. 41–50, Jan. 2010.
[21] C. M. Yang, H. L. Kao, Y. C. Chang, M. T. Chen, H. M. Chang, and C. H. Wu, “A low phase noise 20 GHz voltage control oscillator using 0.18-μm CMOS technology,” 2010 IEEE Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS 2010), pp. 185–188, Apr. 2010.
[22] J. H. C. Zhan, J. S. Duster, K. T. Kornegay, “A comparative study of MOS VCOs for low voltage high performance operation,” islped, pp. 244–247, Proceedings of the 2004 International Symposium on Low Power Electronics and Design (ISLPED’04), 2004.
[23] Hsieh-Hung Hsieh and Liang-Hung Lu, “A high-performance CMOS voltage-controlled oscillator for ultra-low-voltage operations,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 3, pp. 467–473, Mar. 2007.
[24] A. Hajimiri and T. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179–194, Feb. 1998.
[25] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuits, vol. 27, pp. 810–820, May 1992.
[26] A. Hajimiri and T. H. Lee, The Design of Low Noise Oscillators, Norwell, MA: Kluwer, 2000.
[27] H. Li, H. M. Rein, T. Suttorp and J. Bock, “Fully integrated SiGe VCOs with powerful output buffer for 77-GHz automotive radar systems and applications around 100 GHz,” IEEE J. Solid-State Circuits, vol. 39, no. 10, pp. 1650–1658, Oct. 2004.
[28] WIN Semiconductors, 0.5μm InGaAs pHEMT Enhancement/Depletion-Mode Device (E/D-Mode) Device Model Handbook, ver. 1.5.0, Sept. 2010.
[29] J.-A. Hou and Y.-H. Wang, “A 7.9 GHz low-power PMOS Colpitts VCO using the gate inductive feedback,” IEEE Microwave Wireless Compon. Lett., vol. 20, no 4, pp. 223–225, Apr. 2010.
[30] Rui Murakami, Kenichi Okada, and Akira Matsuzawa, “A 484-μm2 21-GHz LC-VCO beneath a stacked-spiral inductor,” IEEE MTT-S European Microwave Conference (EuMC), Paris, France, pp.1615–1618, Sept. 2010.
[31] Chi-Kai Hsieh, Design of Microwave and Millimeter-wave CMOS VCOs, M.S. thesis, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, R.O.C., 2008.
[32] B. Razavi, RF Microelectronics, Prentice Hall, 1998.
[33] F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 873–887, Jun. 2001.
[34] M. S. J. Steyaert, J. Janssens, B. De Muer, M. Borremans, and N. Itoh, “A 2-V CMOS cellular transceiver front-end,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1895–1907, Dec. 2000.
[35] A. Ravi1, K. Soumyanath, L. R. Carley, and R. Bishop, “An integrated 10/5 GHz injection-locked quadrature LC VCO in a 0.18 μm digital CMOS process,” in Proc. IEEE Eur. Solid-State Circuits Conf., pp. 543–546, Sept. 2002.
[36] A. Rofougaran, G. Chang, J. J. Rael, J. Y.-C. Chang, M. Rofougaran, P. J. Chang, M. Djafari, J. Min, E. W. Roth, A. A. Abidi, and H. Samueli, “A single-chip 900-MHz spread-spectrum wireless transceiver in 1-μm CMOS—Part I: Architecture and transmitter design,” IEEE J. Solid-State Circuits, vol. 33, no. 4, pp. 515–534, Apr. 1998.
[37] M. Tiebout, “Low-power low-phase-noise differentially tuned quadrature VCO design in standard CMOS,” IEEE J. Solid-State Circuits, vol. 36, no. 7, pp. 1018–1024, July 2001.
[38] P. Andreani, “A 2 GHz, 17% tuning range quadrature CMOS VCO with high figure-of-merit and 0.6° phase error,” in Proc. IEEE Eur. Solid-State Circuits Conf., Sept. 2002, pp. 815–818.
[39] P. Andreani, A. Bonfanti, L. Romanò, and C. Samori, “Analysis and design of a 1.8-GHz CMOS LC quadrature VCO,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1737–1747, Dec. 2002.
[40] Sander L. J. Gierkink, Salvatore Levantino, Robert C. Frye, Carlo Samori and Vito Boccuzzi, “A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling,” IEEE J. Solid-State Circuits, vol. 38, no.7, pp. 1148–1154, July 2003.
[41] S. B. Shin, H. C. Choi, and S.-G. Lee, “Source-injection parallel coupled LC-QVCO,” Electron. Lett., vol. 39, no. 14, pp. 1059–1060, July 2003.
[42] Abumoslem Jannesari and Mahmoud Kamarei, “Source-injection serial coupled CMOS LC quadrature VCO,” IEICE Electron. Express, vol. 4, no. 14, pp. 467–471, 2007.
[43] H. Kim, C. Cha, S. Oh, M. Yang and S. Lee, “A very low-power quadrature VCO with back-gate coupling,” IEEE J. Solid-State Circuits, vol. 39, no.6, pp. 952–955, Jun. 2004.
[44] Shuenn-Yuh Lee, Liang-Hung Wang, and Yu-Heng Lin, “A CMOS quadrature VCO with subharmonic and injection-locked techniques,” IEEE Transactions on Circuits and Systems—II: Express Briefs, vol. 57, no. 11, pp. 843–847, Nov. 2010.
[45] S.J. Yun, D.Y. Yoon, and S.G. Lee, ‘‘A complementary CMOS LC quadrature oscillator,” IEICE Trans. Electronics, vol. E91-C, no.11, pp. 1806–1810, Nov. 2008.
[46] K.-W. Cheng and D. J. Allstot, “A gate-modulated CMOS LC quadrature VCO,” IEEE RFIC Symp. Dig., pp. 267–270, Boston, Jun. 2009.
[47] Fredrik Tillman, Niklas Troedsson and Henrik Sjöland, “A 1.2 volt 1.8GHz CMOS quadrature front-end,” in Symp. VLSI Circuits Dig. Tech. Papers, pp. 362–365, Jun. 2004.
[48] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang and M.-H. Juang, “A low-voltage quadrature CMOS VCO based on voltage-voltage feedback topology,” IEEE Microw. Wireless Components Lett., vol. 16, no. 12, pp. 696–698, Dec. 2006.
[49] A. W. L. Ng and H. C. Luong, “A 1-V 17-GHz 5-mW CMOS quadrature VCO based on transformer coupling,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1933–1941, Sept. 2007.
[50] Chung-Ting Lu, Hsieh-Hung Hsieh, and Liang-Hung Lu, “A low-power quadrature VCO and its application to a 0.6-V 2.4-GHz PLL,” IEEE Transactions on Circuits and Systems—I: Regular Papers, vol. 57, no. 4, pp. 793–802, Apr. 2010.
[51] T. Yu and G. M. Rebeiz, “A 24 GHz 4-channel phased-array receiver in 0.13 μm CMOS,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Conf., pp. 361–364, Jun. 2008.
[52] A. Hajimiri, H. Hashemi, A. Natarajan, X. Guan, and A. Komijani, “Integrated phased array systems in silicon,” Proceedings of the IEEE, vol. 93, no. 9, pp. 1637–1655, Sept. 2005.
[53] A. Afsahi, et al., “A low-power single-weight-combiner 802.11abg SoC in 0.13 μm CMOS for embedded applications utilizing an area and power efficient Cartesian phase shifter and mixer circuit,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1101–1118, May 2008.
[54] K. Scheir, S. Bronckers, J. Borremans, P. Wambacq, and Y. Rolain, “A 52 GHz phased-array receiver frond-end in 90 nm digital CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2651–2659, Dec. 2008.
[55] G. Huang, S.-K. Kim, Z. Gao, H. Ma, V. Fusco, and B.-S. Kim, “Sixteen-phase CMOS millimetre-wave voltage-controlled oscillator,” IET Microw. Antennas Propag., vol. 4, iss. 12, pp. 2057–2061, Mar. 2010.
[56] J. Cabanillas, J. M. Lopez-Villegas, and G. M. Rebeiz, “A 900 MHz low phase noise CMOS quadrature oscillator,” IEEE RFIC Symp., Seattle, Washington, USA, pp. 63–66, 2002.
[57] J. Chang and C. K. Kim, “A symmetrical 6-GHz fully integrated cascode coupling CMOS LC quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 670–672, Oct. 2005.
[58] H. Choi, S. B. Shin, and S. Lee, “A low-phase noise LC-QVCO in CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 11, pp. 540–542, Nov. 2004.
[59] J. P. Hong, S. J. Yun, N. J. Oh, and S. G. Lee, “A 2.2-mW backgate coupled LC quadrature VCO with current reused structure,” IEEE Microw. Wireless Compon. Lett., vol. 17, pp. 298–300, Apr. 2007.
[60] L. Romano and S. Levantino, “Phase noise and accuracy in quadrature oscillators,” IEEE ISCAS, pp. 161–164, May 2004.
[61] Sabine Hackl, Josef Böck, Günter Ritzberger, Martin Wurzer, and Arpad L. Scholtz, “A 28-GHz monolithic integrated quadrature oscillator in SiGe bipolar technology,” IEEE J. Solid-State Circuits, vol. 38, pp. 135–137, Jan. 2003.
[62] Frank Ellinger and Heinz Jackel, “38-43 GHz quadrature VCO on 90nm VLSI CMOS with feedback frequency tuning,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2005, pp. 1701–1703.
[63] A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900-MHz CMOS LC-oscillator with quadrature outputs,” in Proc. ISSCC’96 Conf., Feb. 1996, pp. 392–393.
[64] D. Guermandi, P. Tortori, E. Franchi and A. Gundi, “A 0.83–2.5-GHz continuously tunable quadrature VCO,” IEEE J. Solid-State Circuits, vol. 40, pp. 2620–2627, Dec. 2005.
[65] Y. C. Chang, Y. C. Hsu, S. G. Lin, Y. Z. Juang, and H. K. Chiou, “On-wafer single contact quadrature accuracy measurement using receiver mode in four-port vector network analyzer,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 371–374, 2008.
[66] “Optimization of quadrature modulator performance,” Technical Notes and Articles, RF Micro Devices Inc.
[67] M. Törmänen and H. Sjöland, “A 26-GHz LC-QVCO in 0.13-μm CMOS,” Proc. 2007 Asia Pacific Microwave Conference, vols 1-5, APMC 2007, Bangkok, Thailand, pp. 1769–1772.
[68] M. Törmänen and H. Sjöland, “A 24-GHz LC-QVCO in 130-nm CMOS using 4-bit switched tuning,” Proc. 2008 IEEE International Conference on Microelectronics, ICM 2008, Sharjah, United Arab Emirates, pp. 462–465.
[69] C.-Y. Kim, J. Yang, D.-W. Kim, and S. Hong, “A K-band quadrature VCO based on asymmetric coupled transmission lines,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 363–366, Jun. 2008.
[70] M. Hossain and A.C. Carusone, “20 GHz low power QVCO and de-skew techniques in 0.13μm digital CMOS,” in Proc. IEEE Custom Integrated Circuits Conf., pp. 447–450, Sept. 2008.
[71] M. Törmänen and H. Sjöland, “A 24-GHz quadrature receiver front-end in 90-nm CMOS,” Proc. 2009 IEEE Asia Pacific Microwave Conference, APMC 2009, Singapore, pp. 1152–1155.
[72] S. Ko, J.-G. Kim, T. Song, E. Yoon, and S. Hong, “20 GHz integrated CMOS frequency sources with a quadrature VCO using transformers,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 269–272, Jun. 2004.
[73] M. Sanduleanu and E. Stikvoort, “Highly linear, varactor-less, 24GHz IQ oscillator,” in IEEE RFIC Symp. Dig., pp. 577–580, Jun. 2005.
[74] R. M. Kodkani and L. E. Larson, “A 25 GHz quadrature voltage controlled ring oscillator in 0.12 μm SiGe HBT,” Silicon Monolithic Integrated Circuits in RF Systems, pp. 18–20, Jan. 2006.
[75] Wei-Min Lance Kuo, John D. Cressler, Yi-Jan Emery Chen, and Alvin J. Josep, “A compact 21 GHz inductorless differential quadrature ring oscillator implemented in SiGe HBT technology,” Materials Science in Semiconductor Processing, vol. 8, issues 1-3, pp. 445–449, Feb. 2005.
[76] B. Razavi, Design of Integrated Circuits for Optical Communication, McGrawHill Inc., 2003.
[77] M. Tiebout, Low Power VCO Design in CMOS, Springer, 2006.
[78] J. Craninckx and M. Steyaert, Wireless CMOS Frequency Synthesizer Design, Kluwer, London, 1998.
[79] V. Radisic X.B. Mei, W.R. Deal, W. Yoshida, P.H. Liu, J. Uyeda, M. Barsky, L. Samoska, A. Fung, T. Gaier, and R. Lai, “Demonstration of sub-millimeter wave fundamental oscillators using 35-nm InP HEMT technology,” IEEE Microwave Wireless Components Lett., vol. 17, no. 5, pp. 223–225, Mar. 2007.
[80] E. Seok, C. Changhua, S. Dongha D.J. Arenas, D.B. Tanner, H. Chin-Ming, and K.O. Kenneth, “A 410 GHz CMOS push-push oscillator with an on-chip patch antenna,” in Proc. Int. Solid-State Circuits Conf. (ISSCC), 2008, pp. 472–473.
[81] S.-A. Yu and P. R. Kiget, “Scaling LC oscillators in nanometer CMOS technologies to a smaller area but with constant performance,” in IEEE Transactions on Circuits and Systems-II, vol. 56, no. 5, May 2009, pp. 354–358.
[82] G. Gonzalez, Microwave Transistor Amplifier: Analysis and Design, 2nd edition, Prentice Hall, Upper Saddle River, New Jersey 07458, 1997.
[83] D. M. Pozar, Microwave Engineering, 2nd edition, John Wiley & Sons, Aug. 1997.
[84] H.J. De Los Santos, RF MEMS Circuit Design for Wireless Communications, Artech House, 2002.
[85] K. O, “Estimation methods for quality factors of inductors fabricated in silicon integrated circuit process technologies,” IEEE J. Solid-State Circuits, vol. 33, pp. 1249–1252, Aug. 1998.
[86] R. Thuringer, Characterization of Integrated Lumped Inductors and Transformers, M.S. thesis, TU-Wien, Institut fur Nachrichten- und Hochfrequenztechnik, 2002.
[87] Haitao Gan, On-Chip Transformer Modeling, Characterization, and Applications in Power and Low Noise Amplifiers, Ph.D. dissertation, Department of Electrical Engineering and Committee on Graduate Studies of Stanford University, 2006.
[88] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, pp. 1368–1382, Sept. 2000.
[89] A. Zolfaghari, A. Chan and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, pp. 620–628, Apr. 2001.
[90] S. S. Mohan, The Design, Modeling and Optimization of On-Chip Inductor and Transformer Circuits, Ph.D. dissertation, Stanford University, Stanford, 1999.
[91] W. Simburger, H. D. Wohlmuth, and P. Weger, “A monolithic 3.7W silicon power amplifier with 59% PAE at 0.9GHz,” IEEE J. Solid-State Circuits, vol. 34, pp. 1881–1892, Dec. 1999.
[92] N. A. Talwalkar, Integrated CMOS Transmit-Receive Switch Using On-Chip Spiral Inductors, Ph.D. dissertation, Stanford University, Stanford, Dec. 2003.
[93] C. P. Yue and S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF ICs,” IEEE J. Solid-State Circuits, vol. 33, pp. 743–752, May 1998.
[94] A. E. Ruehli, “Equivalent circuit models for three-dimensional multiconductor systems,” IEEE Trans. Microwave Theory and Techniques, vol. 22, pp. 216–221, Mar. 1974.
[95] Ansoft Corp., Maxwell 2D Parameter Extractor User's Reference, 2001.
[96] A.Kral, F. Behbahani, and A. A. Abidi, “RF-CMOS oscillators with switched tuning,” IEEE Custom Integrated Circuits Conference, pp. 555–558, 1998.
[97] Hooman Darabi and Asad A. Abidi, “A 4.5-mW 900-MHz CMOS receiver for wireless paging,” IEEE J. Solid-State Circuits, vol. 35, no. 8, pp. 1085–1096, Aug. 2000.
[98] R. Aparicio and A. Hajimiri, “Capacity limits and matching properties of integrated capacitors,” IEEE J. Solid-State Circuits, vol. 37, pp. 384–393, Mar. 2002.
[99] H. Samavati, A. Hajimiri, R. Shahani, G.N. Nasserbakht, and T. H. Lee, “Fractal capacitors,” IEEE J. Solid-State Circuits, vol. 33, pp. 2035–2041, Dec. 1998.
[100] H. Diahanshahi, N. Saniei, S. P. Voinigescu, M. C. Maliepaard, and C. A. T. Salama, “A 20-GHz InP-HBT voltage-controlled oscillator with wide frequency tuning range,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 9, pp. 1566–1572, Sept. 2001.
[101] D. Baek, S. Ko, J. G. Kim, D. W. Kim, and S. Hong, “Ku-band InGaP-GaAs HBT MMIC VCOs with balanced and differential Topologies,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1353–1359, Apr. 2004.
[102] K. Tsutsumi, Miki Kagano, and Noriharu Suematsu, “A double tuned Ku-band SiGe-MMIC VCO with variable feed-back capacitor,” APMC Proceedings, Dec. 2006, pp. 1118–1127.
[103] B. Jung and R. Harjani, “High-frequency LC VCO design using capacitive degeneration,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2359–2370, Dec. 2004.
[104] C. K. Chiu, Design and Realization of CMOS RF Frequency Synthesizer, M.S. Thesis, Graduate Institute of Electrical Engineering, National Taiwan University, 2000.
[105] Hong-Yeh Chang, Yi-Hsien Cho, Ming-Fong Lei, Chin-Shen Lin, Tian-Wei Huang, and Huei Wang, “A 45-GHz quadrature voltage controlled oscillator with a reflection-type IQ modulator in 0.13 μm CMOS technology,” 2006 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, Jun. 2006, pp. 739–742.
[106] S. Saberi and J. Paramesh, “A 11.5-22GHz dual-resonance transformer-coupled quadrature VCO,” IEEE Radio Frequency Integrated Circuits Symp., Jun. 2011.
[107] Hyun Seok Choi, Quang Diep Bui, and Chul Soon Park, “A low-power CMOS VCO for 2.4GHz WLAN,” IEEE Compound Semiconductor Integrated Circuit (CSIC) Symposium, pp. 1–4, Oct. 2007.
|