參考文獻 |
[1] A. Algergawy, E. Schallehn, G. Saake, A Prufer sequence-based approach for schema matching, in: BalticDB & IS2008, Estonia, 2008.
[2] A. Algergawy, E. Schallehn, G. Saake. A Sequence-based Ontology Matching Approach. 18th European Conference on Artificial Intelligence Workshop, Greece. 2008.
[3] A. Algergawy, E. Schallehn, G. Saake. Improving XML schema matching performance using Prufer sequences. Data & Knowledge Engineering, Volume 68, pp. 728–747. 2009.
[4] A. Algergawy, R. Nayak, G. Saake. Element similarity measures in XML schema matching. Information Sciences Vol.180. pp. 4975-5998. 2010.
[5] A. Gal, Managing uncertainty in schema matching with top-k schema mappings, Journal on Data Semantics Vol.6 90–114, 2006.
[6] A. Halevy, A. Rajaraman, J. Ordille. Data Integration: The Teenage Years. Very Large Data Bases, pp. 12-15. 2006.
[7] B. He, K. C.-C. Chang, and J. Han. Discovering Complex Matching across Web Query Interfaces: A Correlation Mining Approach. In Proceedings of the 2004 ACM SIGKDD International Conference on Knowledge Discovery and Data mining, pp. 148-157, 2004.
[8] C.-C. Huang, C.-H. Chang. On-the-fly Data Integration of Homogeneous Web Data. Master dissertation, National Central University. 2004.
[9] C.-H. Chang, M. Kayed, M. R. Girgis, K. Shaalan, A Survey of Web Information Extraction Systems, IEEE TKDE (SCI, EI), Vol. 18, No. 10, pp. 1411-1428. 2006.
[10] E. Rah, P. A. Bernstein. A survey of approaches to automatically schema matching. The International Journal on Very Large Data Bases, Vol. 10, Issue 4, pp. 334-350. 2001.
[11] G. Beliakov, A. Pradera, T. Calvo, Aggregation Functions: A Guide for Practitioners, Studies in Fuzziness and Soft Computing, vol. 221, Springer, 2007.
[12] H. Zhao, Combining schema and instance information for integrating heterogeneous databases: an analytical approach and empirical evaluation, Ph.D. dissertation, University of Arizona, 2002.
[13] H. Zhao, S. Ram, Clustering schema elements for semantic integration of heterogeneous data sources, Journal of Database Management 15, Vol. 4, pp. 88–106. 2004.
[14] H. Zhao, S. Ram, Clustering similar schema elements across heterogeneous databases: a first step in database integration. Advanced Topics in Database Research, Vol. 5, pp. 235–256. 2006.
[15] H. Zhao, S. Ram, Entity identification for heterogeneous database integration—a multiple classifier system approach and empirical evaluation, Information Systems, Vol. 30, pp. 119–132. 2005.
[16] H. Zhao, S. Ram. Combining schema and instance information for integrating heterogeneous data sources. Data & Knowledge Engineering. 2006.
[17] J.-H. Li, C.-H. Chang. Differentiating Templates and Data Values from Semi-Structured Web Pages. Master dissertation, National Central University. 2004.
[18] L.-F. Chang, C.-H. Chung. Generation of Web page Fetchers from Navigation Records. Master dissertation, National Central University. 2005.
[19] M. Kayed, C.-H. Chang. FiVaTech : Page-Level Web Data Extraction from Template Pages. IEEE Trans. Knowl. Data Eng. Vol. 22, No.2, pp. 249-263, 2010.
[20] M. Kayed. C.-H. Chang, Page-Level Web Data Extraction from Template Pages IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 2, pp. 249-263, 2010.
[21] Y.-L. Lin, C.-H. Chung. Page-level Wrapper Verification based on Structure, Semantic and Schema. Master dissertation, National Central University.2010.
[22] Z. Zhang, B. He, and K. C.-C. Chang. On-the-fly constraint mapping across web query interfaces. In Proceedings of the Very Large Data Bases Workshop on Information Integration on the Web, 2004.
[23] N. Kushmerick. Wrapper Verification. World Wide Web, vol. 3, no 2, pp. 79–94, 2000.
|