博碩士論文 975201104 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.218.94.236
姓名 張碩甫(Shou-fu Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 改善高速光連接系統訊號完整性之被動等化器研製
(Passive equalizer design for signal integrity of high speed optical interconnect system)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 具有良好選擇度的寬頻吸收式帶止濾波器★ 微小化吸收式帶止濾波器之通帶改善
★ 共面波導帶通濾波器之研製★ 微帶耦合線帶通濾波器與雙工器研製
★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製★ K-Band及Q-Band毫米波帶通濾波器設計
★ 薄膜製程射頻被動元件設計★ 微波帶通低雜訊放大器設計
★ 積體式微波帶通濾波器之研製★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列
★ 以多重耦合線實現多功能帶通濾波器★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究目標為研製一應用於高速光連接系統的被動等化器,利用電容、電感和電阻等被動元件來補償整體系統的頻率響應平坦度,可以有效提升訊號傳輸的訊號雜訊比及高速光連接系統的訊號完整性。
本論文利用光通訊系統整體的S參數和理想訊號完整性所需要的小訊號頻寬,反推出目標被動等化器的頻率響應。在驗證實驗中,高速光連接系統輸出端使用德國ULM公司所生產的垂直共振腔面射型雷射晶片(ULM-850-5Gbps),其標準操作電流為5 mA,傳輸速度可以達到5 Gbps。
首先,將ULM-850電流操作在5.5 mA、訊號速度10 Gbps的實驗環境下,經過被動等化器改善後,傳輸速度可以由5 Gbps提升到10 Gbps,並可通過OC-192與10 GbE的遮罩規範;而傳輸速度固定在5 Gbps時,在符合10-12誤碼率之情況下,ULM-850的操作電流可由2.9 mA下降到2.35 mA。
本論文提出的被動等化器設計,具有簡單明瞭的設計流程,電路架構簡單且易與光連接架構整合,應用起來有較多的自由度和設計彈性。預期在實務應用中可以節省直流功率損耗,降低整體製作成本。
摘要(英) The purpose of this research is to develop a passive equalizer that can be used in the high-speed optical interconnection system. This equalizer effectively increases the signal to noise ratio (SNR) of the signal transmission and also improves the signal integrity of the high-speed optical interconnection system by using capacitors, inductors, resistors to compensate for the overall system frequency response flatness.
Based on the S parameters of the high-speed optical interconnection system and the band width of the small-signal in the ideal signal integrity, the frequency response of the target passive equalizer can be calculated. Experiments use the Vertical cavity surface-emitting laser (VCSEL) chips (ULM-850-5Gbps) from ULM in the output of high-speed optical interconnection system, the standard bias current is 5 mA and the transmission speed can reach 5 Gbps.
After improving the passive equalizer, the transmission speed can increase from 5 Gbps to 10 Gbps and also pass the eye mask of OC-192 and 10 GbE. If the transmission speed is kept at 5 Gbps, the bias current of ULM-850 can be decreased from 2.9 mA down to 2.35 mA under the 10-12 bit error rate (BER).
This passive equalizer is an intelligible design which is easy to understand; its circuit is simple and can easily be integrated with the high-speed optical interconnection system. All these features make it very flexible and applicable to other design. It is believed to save DC power consumption and lower costs in practical applications.
關鍵字(中) ★ 被動等化器
★ 高速光連接系統
★ 訊號完整性
★ 垂直共振腔面射型雷射
★ 誤碼率
關鍵字(英) ★ BER
★ OC-192
★ 10 GbE
★ signal integrity
★ VCSEL
★ high-speed optical interconnection system
★ passive equalizer
論文目次 論文摘要 i
Abstract ii
致謝 iii
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1研究動機 1
1.2相關文獻 4
1.3論文架構 7
第二章 設計原理與流程 8
2.1簡介 8
2.2設計原理 9
2.3設計流程 13
2.4總結 16
第三章 被動等化器實作與驗證 17
3.1簡介 17
3.2量測系統架構介紹 19
3.2.1小訊號頻寬之量測系統 19
3.2.2眼圖之量測系統 22
3.2.3誤碼率之量測系統 24
3.3低操作電流(2.9 mA)下的被動等化器設計 25
3.4標準操作電流(5.5 mA)下的被動等化器設計 39
3.5相同的耦光條件下實驗結果比較 49
第四章 結論與未來展望 51
4.1結論 51
4.2未來展望 52
參考文獻 54
附錄一量測儀器 58
附錄二SNR與BER的計算公式 60
參考文獻 [1]B. Razavi, Design of integrated circuits for optical communication, McGraw Hill, Inc., 2003.
[2]蕭旭良,“運用於光學連結模組之矽基光學平台技術”碩士論文, 國立中央大學, 2008.
[3]M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science., vol. 298, no. 5597, pp. 1401–1403, Nov. 2002.
[4]Y. C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, highspeed VCSELs with deep oxidation layer,” Electron. Lett., vol. 42, no. 22, pp. 1281–1282, Oct. 2006.
[5]Y. C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, highspeed VCSELs with 35 Gb/s error free operation,” IEEE Electron. Lett., vol. 43, no. 19, pp. 1022–1023, Sep. 2007.
[6]A. Mutig, G. Fiol, K. Potschke, P. Moser, D. Arsenijevic, V. A. Shchukin, N. N. Ledentsov, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, F. Hopfer, and D. Bimberg, “Temperature dependent small signal analysis of high-speed high temperature stable 980-nm VCSELs,” IEEE J. Sel. Topics Quantum Electron., vol. 15, no. 3, pp. 679–686, May. 2009.
[7]T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, and M. Tsuji, “High-speed 1.1-μm-range InGaAs VCSELs,” in IEEE Proc. Opt. Commun. Conf., San Diego, CA, pp. 1–3, Mar. 2008.
[8]C. Chen, P. O. Leisher, D. M. Kuchta, and K. D. Choquette, “Highspeed modulation of index-guided implant-confined vertical cavity surface emitting lasers,” IEEE J. Sel. Topics Quantum Electron., vol. 15, no. 3, pp. 673–678, May. 2009.
[9]C. Chen, Z. Tian, K. D. Choquette, and D. V. Plant, “25-Gb/s direct modulation of implant confined holey vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 22, no. 7, pp. 465-467, Apr. 2010.
[10]C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking range and stability of injection locked 1.54 μm InGaAsP semiconductor lasers,” IEEE J. Quantum Electron., vol. QE-21, no 8, pp. 1152-1156, Aug. 1985.
[11]A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection” IEEE J. Quantum Electron., vol. 39, no 10, pp. 1196-1204, Sep. 2003.
[12]T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 7, no 7, pp. 709-711, July. 1995.
[13]N. Alic, E. Myslivets, J. Coles, R. Saperstein, J. Windmiller, S. Radic, and R. Jiang, “Equalized 42.8 Gb/s transmission based on a 10 Gb/s EML transmitter,” in IEEE Proc. ECOC, Berlin, Germany, pp. 16-20, Sep. 2007.
[14]X. Zhao, K. Hasebe, T. Sakaguchi, F. Koyama, C. J. C. Hasnain, N. Nishiyama, C. Caneau, and C.E. Zah, “Tunable optical equalizer using diffraction grating filters,” IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1590-1592, Sep. 2008.
[15]K. Fukuda, H. Yamashita, F. Yuki, M. Yagyu, R. Nemoto, T. Takemoto, T. Saito, N. Chujo, K.Yamamoto, H. Kanai, and A. Hayashi, “An 8 Gb/s transceiver with a 3× -oversampling 2-threshold eye-tracking CDR circuit for a -36.8 dB-loss backplane,” in IEEE ISSCC Dig. Tech. Papers., pp. 98–99, Feb. 2008.
[16]L. Chen, X. Zhang, and F. Spagna, “A scalable 3.6-to-5.2 mW 5-to-10 Gb/s 4-tap DFE in 32 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers., pp. 180-181, Feb. 2009.
[17]Y. Liu, B. Kim, T. Dickson, J. Bulzacchelli, and D. Friedman, “A 10 Gb/s compact low-power serial I/O with DFE-IIR equalization in 65 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers., pp. 182-183, Feb. 2009.
[18]K. Fukuda, H. Yamashita, F. Yuki, G. Ono, R. Nemoto, E. Suzuki, T. Takemoto, and T. Saito, “A 10 Gb/s receiver with track-and-hold-type linear phase detector and charge-redistribution 1st-order ΔΣ modulator, ” IEEE J. Solid-State Circuits., vol. 44, pp. 3539-3546, no. 12, Dec. 2009.
[19]S. Palermo and M. Horowitz, “High-speed transmitters in 90nm CMOS for high-density optical interconnects,” in IEEE ESSCIRC., pp. 508–511, Feb. 2006.
[20]S. Palermo, A. Emami-Neyestanak, and M. Horowitz, “A 90 nm CMOS 16 Gb/s transceiver for optical interconnects,” in IEEE ISSCC Dig. Tech. Papers., pp. 44-45, Feb. 2007.
[21]A. C. Y. Lin and M. J. Loinaz, “A serial data transmitter for multiple 10 Gb/s communication standards in 0.13 μm CMOS,” in IEEE ISSCC Dig. Tech. Papers., pp. 108-109, Feb. 2008.
[22]K. Ohhata, K. Seki, H. Imamura, Y. Takeshita, K. Yamashita, H. Kanai, and N. Chujo, “A 90-nm CMOS 4 × 10 Gb/s VCSEL driver using asymmetric emphasis technique for optical interconnection,” in IEEE Asia–Pacific Microw. Conf., pp. 01-04, Dec. 2008.
[23]K. Ohhata, H. Imamura, Y. Takeshita, K. Yamashita, H. Kanai, and N. Chujo, “Design of a 4 10 Gb/s VCSEL driver using asymmetric emphasis technique in 90-nm CMOS for optical interconnection,” IEEE Trans. Microw. Theory Tech., vol. 58, pp. 1107-1115, no. 5, May 2010.
[24]D. M. Pozar, Microwave Engineering, 3rd Edition, John Wiley & Sons, Inc., 2005.
[25]W.Humann, “Compensation of transmission line loss for gbit/s test on ATEs,” IEEE International Test Conf., pp.430-437, Jan. 2002.
[26]J. D. Geest, S. Sercu, and J. Nadolny, “ How to make optimal use of signal conditioning in 40 gb/s copper interconnects,” DesignCon2003, High-Performance System Design Conf., pp. 01-19, Jan. 2003.
[27]E. Song, J. Cho, W. Lee, M. Shin, and J. Kim, “ A wide-band passive equalizer design on PCB based on near-end crosstalk and reflections for 12.5 Gbps serial data transmission, ” IEEE Microwave Wireless Compon. Lett., vol. 18, pp. 794-796, no. 12, Dec. 2008.
[28]“ Spectral content of NRZ test patterns,” Application Note of MAXIM., Jan. 2005.
[29]ADS(Advanced Design System) tutorial , Agilent technologies corporation.
[30]P. Morton, T. Tanbun-Ek, R. Logan, A.M. Sergent, P. F. Sciortino, and D. Coblentz: “Frequency response subtraction for simple measurement of intrinsic laser dynamic properties”, IEEE Photon. Technol. Lett., vol.4, pp. 133–136, Feb. 1992.
[31]“NRZ bandwidth HF-cutoff v.s. SNR”, Application Note of MAXIM., Dec. 2001.
指導教授 林祐生(Yo-shen Lin) 審核日期 2011-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明