參考文獻 |
[1]B. Razavi, Design of integrated circuits for optical communication, McGraw Hill, Inc., 2003.
[2]蕭旭良,“運用於光學連結模組之矽基光學平台技術”碩士論文, 國立中央大學, 2008.
[3]M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science., vol. 298, no. 5597, pp. 1401–1403, Nov. 2002.
[4]Y. C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, highspeed VCSELs with deep oxidation layer,” Electron. Lett., vol. 42, no. 22, pp. 1281–1282, Oct. 2006.
[5]Y. C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, highspeed VCSELs with 35 Gb/s error free operation,” IEEE Electron. Lett., vol. 43, no. 19, pp. 1022–1023, Sep. 2007.
[6]A. Mutig, G. Fiol, K. Potschke, P. Moser, D. Arsenijevic, V. A. Shchukin, N. N. Ledentsov, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, F. Hopfer, and D. Bimberg, “Temperature dependent small signal analysis of high-speed high temperature stable 980-nm VCSELs,” IEEE J. Sel. Topics Quantum Electron., vol. 15, no. 3, pp. 679–686, May. 2009.
[7]T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, and M. Tsuji, “High-speed 1.1-μm-range InGaAs VCSELs,” in IEEE Proc. Opt. Commun. Conf., San Diego, CA, pp. 1–3, Mar. 2008.
[8]C. Chen, P. O. Leisher, D. M. Kuchta, and K. D. Choquette, “Highspeed modulation of index-guided implant-confined vertical cavity surface emitting lasers,” IEEE J. Sel. Topics Quantum Electron., vol. 15, no. 3, pp. 673–678, May. 2009.
[9]C. Chen, Z. Tian, K. D. Choquette, and D. V. Plant, “25-Gb/s direct modulation of implant confined holey vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 22, no. 7, pp. 465-467, Apr. 2010.
[10]C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking range and stability of injection locked 1.54 μm InGaAsP semiconductor lasers,” IEEE J. Quantum Electron., vol. QE-21, no 8, pp. 1152-1156, Aug. 1985.
[11]A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection” IEEE J. Quantum Electron., vol. 39, no 10, pp. 1196-1204, Sep. 2003.
[12]T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 7, no 7, pp. 709-711, July. 1995.
[13]N. Alic, E. Myslivets, J. Coles, R. Saperstein, J. Windmiller, S. Radic, and R. Jiang, “Equalized 42.8 Gb/s transmission based on a 10 Gb/s EML transmitter,” in IEEE Proc. ECOC, Berlin, Germany, pp. 16-20, Sep. 2007.
[14]X. Zhao, K. Hasebe, T. Sakaguchi, F. Koyama, C. J. C. Hasnain, N. Nishiyama, C. Caneau, and C.E. Zah, “Tunable optical equalizer using diffraction grating filters,” IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1590-1592, Sep. 2008.
[15]K. Fukuda, H. Yamashita, F. Yuki, M. Yagyu, R. Nemoto, T. Takemoto, T. Saito, N. Chujo, K.Yamamoto, H. Kanai, and A. Hayashi, “An 8 Gb/s transceiver with a 3× -oversampling 2-threshold eye-tracking CDR circuit for a -36.8 dB-loss backplane,” in IEEE ISSCC Dig. Tech. Papers., pp. 98–99, Feb. 2008.
[16]L. Chen, X. Zhang, and F. Spagna, “A scalable 3.6-to-5.2 mW 5-to-10 Gb/s 4-tap DFE in 32 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers., pp. 180-181, Feb. 2009.
[17]Y. Liu, B. Kim, T. Dickson, J. Bulzacchelli, and D. Friedman, “A 10 Gb/s compact low-power serial I/O with DFE-IIR equalization in 65 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers., pp. 182-183, Feb. 2009.
[18]K. Fukuda, H. Yamashita, F. Yuki, G. Ono, R. Nemoto, E. Suzuki, T. Takemoto, and T. Saito, “A 10 Gb/s receiver with track-and-hold-type linear phase detector and charge-redistribution 1st-order ΔΣ modulator, ” IEEE J. Solid-State Circuits., vol. 44, pp. 3539-3546, no. 12, Dec. 2009.
[19]S. Palermo and M. Horowitz, “High-speed transmitters in 90nm CMOS for high-density optical interconnects,” in IEEE ESSCIRC., pp. 508–511, Feb. 2006.
[20]S. Palermo, A. Emami-Neyestanak, and M. Horowitz, “A 90 nm CMOS 16 Gb/s transceiver for optical interconnects,” in IEEE ISSCC Dig. Tech. Papers., pp. 44-45, Feb. 2007.
[21]A. C. Y. Lin and M. J. Loinaz, “A serial data transmitter for multiple 10 Gb/s communication standards in 0.13 μm CMOS,” in IEEE ISSCC Dig. Tech. Papers., pp. 108-109, Feb. 2008.
[22]K. Ohhata, K. Seki, H. Imamura, Y. Takeshita, K. Yamashita, H. Kanai, and N. Chujo, “A 90-nm CMOS 4 × 10 Gb/s VCSEL driver using asymmetric emphasis technique for optical interconnection,” in IEEE Asia–Pacific Microw. Conf., pp. 01-04, Dec. 2008.
[23]K. Ohhata, H. Imamura, Y. Takeshita, K. Yamashita, H. Kanai, and N. Chujo, “Design of a 4 10 Gb/s VCSEL driver using asymmetric emphasis technique in 90-nm CMOS for optical interconnection,” IEEE Trans. Microw. Theory Tech., vol. 58, pp. 1107-1115, no. 5, May 2010.
[24]D. M. Pozar, Microwave Engineering, 3rd Edition, John Wiley & Sons, Inc., 2005.
[25]W.Humann, “Compensation of transmission line loss for gbit/s test on ATEs,” IEEE International Test Conf., pp.430-437, Jan. 2002.
[26]J. D. Geest, S. Sercu, and J. Nadolny, “ How to make optimal use of signal conditioning in 40 gb/s copper interconnects,” DesignCon2003, High-Performance System Design Conf., pp. 01-19, Jan. 2003.
[27]E. Song, J. Cho, W. Lee, M. Shin, and J. Kim, “ A wide-band passive equalizer design on PCB based on near-end crosstalk and reflections for 12.5 Gbps serial data transmission, ” IEEE Microwave Wireless Compon. Lett., vol. 18, pp. 794-796, no. 12, Dec. 2008.
[28]“ Spectral content of NRZ test patterns,” Application Note of MAXIM., Jan. 2005.
[29]ADS(Advanced Design System) tutorial , Agilent technologies corporation.
[30]P. Morton, T. Tanbun-Ek, R. Logan, A.M. Sergent, P. F. Sciortino, and D. Coblentz: “Frequency response subtraction for simple measurement of intrinsic laser dynamic properties”, IEEE Photon. Technol. Lett., vol.4, pp. 133–136, Feb. 1992.
[31]“NRZ bandwidth HF-cutoff v.s. SNR”, Application Note of MAXIM., Dec. 2001.
|