參考文獻 |
中文部分
1. 張家寧, 陳信源, 葉鎮源, 黃明居, 柯皓仁, 楊維邦 (2008). 以概念萃取為基礎之文件分群. 2008 資訊科技國際研討會. 台中:朝陽科技大學.
英文部分
2. Basilico, J., & Hofmann, T. (2004). Unifying collaborative and content-based filtering. Paper presented at the Proceedings of the Twenty-first International Conference on Machine learning. Banff, Alberta, Canada.
3. Bellman, R. (1961). Adaptive control processes - A guided tour. New Jersey, United States: Princeton University Press.
4. Belkin, N. J., & Croft, W. B. (1992). Information filtering and information retrieval: two sides of the same coin? Commun. ACM, 35(12), 29-38.
5. Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. Paper presented at the Proceedings of the Eleventh Annual Conference on Computational learning theory, Madison, Wisconsin, United States.
6. Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol., 2(3), 1-27.
7. Chang, H.-C., & Hsu. C.-C., (2005). Using topic keyword clusters for automatic document clustering. Paper presented at the Third International Conference on Information Technology and Applications, Sydney, Australia.
8. Chen, P.-I., & Lin, S.-J. (2010). Automatic keyword prediction using Google similarity distance. Expert Systems with Applications, 37(3), 1928-1938.
9. Chen, P.-I., & Lin, S.-J. (2011). Word AdHoc Network: Using Google Core Distance to extract the most relevant information. Know.-Based Syst., 24(3), 393-405.
10. Cilibrasi, R. L., & Vitanyi, P. M. B. (2007). The Google Similarity Distance. IEEE Trans. on Knowl. and Data Eng., 19(3), 370-383.
11. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1-38.
12. Dong, Z., & Dong Q., (2003). HowNet - a hybrid language and knowledge resource. Paper presented at the Proceedings of IEEE 2003 International Conference on Natural Language Processing and Knowledge Engineering, Beijing, China.
13. Dries, A., & Rückert, U. (2009). Adaptive concept drift detection. Statistical Analy Data Mining, 2(5-6), 311-327.
14. Hanani, U., Shapira, B., & Shoval, P. (2001). Information Filtering: Overview of Issues, Research and Systems. User Modeling and User-Adapted Interaction, 11(3), 203-259.
15. Joachims, T. (1997). A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization. Paper presented at the Proceedings of the Fourteenth International Conference on Machine Learning, Nashville, Tennessee, United States..
16. Joachims, T. (1998). Text categorization with Support Vector Machines: Learning with many relevant features. In C. Nédellec & C. Rouveirol (Eds.), Machine Learning: ECML-98 (Vol. 1398, pp. 137-142): Springer Berlin / Heidelberg.
17. Klinkenberg, R. (2004). Learning drifting concepts: Example selection vs. example weighting. Intell. Data Anal., 8(3), 281-300.
18. Klinkenberg, R., & Joachims, T. (2000). Detecting Concept Drift with Support Vector Machines. Paper presented at the Proceedings of the Seventeenth International Conference on Machine Learning, Stanford, California, United States.
19. Klinkenberg, R., & Renz, I. (1998). Adaptive Information Filtering: Learning in the Presence of Concept Drifts. Paper presented at the Workshop Notes of the ICML/AAAI-98 Workshop Learning for Text Categorization, Madison, Wisconsin, United States.
20. Kumar, S., Raghavan, V. S., & Deng, J. (2006). Medium Access Control protocols for ad hoc wireless networks: A survey. Ad Hoc Netw., 4(3), 326-358.
21. Liu, Y.-C., Wang, X.-L., & Liu, B.-Q. (2004). A feature selection algorithm for document clustering based on word co-occurrence frequency. Paper presented at the Proceedings of 2004 International Conference on Machine Learning and Cybernetics, Shanghai, China.
22. Miller, G. A. (1995). WordNet: a lexical database for English. Commun. ACM, 38(11), 39-41.
23. Montebello, M. (1998). Information overload-an IR problem? Paper presented at the Proceedings of the String Processing and Information Retrieval: A South American Symposium, Santa Cruz de La Sierra , Bolivia.
24. Nigam, K., & Ghani, R. (2000). Analyzing the effectiveness and applicability of co-training. Paper presented at the Proceedings of the ninth international conference on Information and knowledge management, McLean, Virginia, United States.
25. Nigam, K., McCallum, A. K., Thrun, S., & Mitchell, T. (2000). Text Classification from Labeled and Unlabeled Documents using EM. Machine Learning, 39(2), 103-134.
26. Pazzani, M., & Billsus, D. (2007). Content-Based Recommendation Systems. In P. Brusilovsky, A. Kobsa & W. Nejdl (Eds.), The Adaptive Web (Vol. 4321, pp. 325-341): Springer Berlin / Heidelberg.
27. Pontil, M., & Verri, A. (1998). Support Vector Machines for 3D Object Recognition. IEEE Trans. Pattern Anal. Mach. Intell., 20(6), 637-646.
28. Quinlan, J. R. (1986). Induction of Decision Trees. Mach. Learn., 1(1), 81-106.
29. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identifying communities in networks. Paper presented at the Proceedings of the National Academy of Sciences of the United States of America, 101(9):2658-2663.
30. Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing & Management, 24(5), 513-523.
31. Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Comput. Surv., 34(1), 1-47.
32. Seidman, S. (1983). Network structure and minimum degree. Social Networks, 5, 269-287.
33. Tsymbal, A.(2004). The Problem of Concept Drift: Definitions and Related Work.Techical report, Department of Computer Science, Trinity College: Dublin, Ireland.
34. Tsymbal, A., Pechenizkiy, M., Pádraig, Cunningham, d., & Puuronen, S. (2008). Dynamic integration of classifiers for handling concept drift. Inf. Fusion, 9(1), 56-68.
35. Tufis, D., & Mason, O. (1998). Tagging Romanian Texts: a Case Study for QTAG, a Language Independent Probabilistic Tagger. Paper presented at the Proceedings of the First International Conference on Language Resource & Evaluation, Granada, Spain.
36. Vapnik, V. (1998). Statistical Learning Theory. New York, United States: Wiley-Interscience.
37. Wang, H., Fan, W., Yu, P. S., & Han, J. (2003). Mining concept-drifting data streams using ensemble classifiers. Paper presented at the Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge discovery and data mining, Washington, D.C, United States.
38. Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications, Cambridge, U.K: Cambridge University Press.
39. Xun, W., Yi, X., & Biwei, L. (2006). A Hybrid Information Filtering Model. Paper presented at the 2006 International Conference on Computational Intelligence and Security, Guangzhou, China.
|