以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:40 、訪客IP:3.14.143.149
姓名 蔡峻豪(Chun-Hau Tsai) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 配置開槽消能鋼板之預力式橋柱耐震性能研究
(Performance of post-tensioned bridge columns)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 本研究針對配置開槽切削消能鋼板之預力式橋柱,複合摩擦機制
之承載行為進行探討,預力式橋柱藉由預力系統之優點,達到自我復
位之效果,並可避免結構主體的損壞,配合外加之消能系統,可提供
穩定之消能能力,並於震後替換消能鋼板即可修復結構,試驗提出以
開槽消能鋼板於預力接合處,利用預力結構之開角行為進行作用,更
利用擴大接合螺孔引入摩擦消能機制,控制消能鋼板以遲滯行為作用
之時機,可有效降低消能鋼板之修復成本,研究中更針對消能能力、
結構勁度以及設計方法進行分析與試驗結果進行比較。
研究結果顯示,配置開槽消能鋼板可有效提供消能能力,利用擴
大螺孔引入摩擦機制將影響結構行為,並可利用擴大孔控制消能鋼板
之作用時機,於小地震利用摩擦進行消能,震後消能鋼板仍能保持彈
性,於大地震後利用材料之遲滯行為增加消能量,震後僅需替換消能
鋼板進行修復,亦提出簡易之公式以提供工程上之簡易推估計算,由
上述結果顯示,開槽式切削消能鋼板消能能力十分良好,引入摩擦機
制更可控制消能鋼板作用時機,避免於小地震後即需替換消能鋼板,
有相當之可行性應用於預力式橋柱結構。
摘要(英) Post-tensioned bridge columns possess self-centering capability to
minimize the residual deformation after earthquake. However, the energy
dissipation mechanism of the system is limited as the structure is required
to maintain elastic during the loading process. In order to improve the
energy dissipation capacity of the system, a new energy dissipating
mechanism was proposed in this study. The new type of energy
dissipating mechanism was composed of post-tensioned bridge column
and a pair of steel plates with reduced sections. A series of cyclic loading
tests were conducted on the proposed energy dissipating mechanism. It
was found from the tests that the system possessed stable hysteretic
behavior and re-centering characteristics thus justified its application to
the engineering practice.
關鍵字(中) ★ 耐震
★ 開槽
★ 橋柱
★ 預力關鍵字(英) ★ bridge column
★ post-tensioned論文目次 摘要 ............................................................................................................. I
ABSTRACT ............................................................................................. II
致謝 .......................................................................................................... III
目錄 ............................................................................................................ V
表目錄 ...................................................................................................... IX
圖目錄 ........................................................................................................ X
照片目錄 ............................................................................................... XIV
第一章緒論........................................................................................ - 1 -
1-1 前言 ............................................................................................ - 1 -
1-2 研究動機與目的 ....................................................................... - 2 -
1-3 論文架構.................................................................................... - 2 -
第二章文獻回顧 ............................................................................... - 4 -
2-1 預力結構研究 ........................................................................... - 5 -
2-2 預力式橋柱研究 ....................................................................... - 7 -
2-3 預力結構設計方法 ................................................................... - 8 -
2-3-1 Performance-Based Design (PBD).................................... - 9 -
2-3-2 Direct Displacement-Based Design (DDBD) .................. - 10 -
VI
第三章理論闡述 ............................................................................. - 11 -
3-1 預力結構基本特性 ................................................................. - 11 -
3-1-1 自我復位接頭理論 ......................................................... - 11 -
3-1-2 自我復位摩擦消能理論 ................................................. - 14 -
3-2 能量消散比.............................................................................. - 15 -
第四章實驗規劃與流程 ................................................................. - 17 -
4-1 實驗規劃.................................................................................. - 17 -
4-2 實驗設備與預力施拉 ............................................................. - 19 -
4-2-1 實驗設備 ......................................................................... - 19 -
4-2-2 預力施拉 ......................................................................... - 20 -
4-2-3 摩擦機制 ......................................................................... - 20 -
4-3 實驗流程.................................................................................. - 21 -
第五章實驗觀察及比較 ................................................................. - 23 -
5-1 實驗觀察.................................................................................. - 23 -
5-1-1 PT 試驗 (空構架試驗) .................................................. - 23 -
5-1-2 N 系列試驗 ...................................................................... - 23 -
5-1-3 F 系列試驗 ...................................................................... - 27 -
第六章試驗結果分析 ..................................................................... - 31 -
VII
6-1 破壞模式比較 ......................................................................... - 31 -
6-2 預力結構勁度分析 ................................................................. - 32 -
6-2-1 等效勁度 ......................................................................... - 33 -
6-2-2 等效勁度推導 ................................................................. - 35 -
6-2-2-1橋柱之等效勁度KC .................................................... - 35 -
6-2-2-2預力鋼棒之等效勁度KPT .......................................... - 36 -
6-2-2-3消能鋼板之等效勁度KED .......................................... - 38 -
6-2-3 F 系列試驗之模型建立 .................................................. - 41 -
6-3 實驗勁度探討 ......................................................................... - 43 -
6-3-1 I 階段之結構勁度 ........................................................... - 43 -
6-3-2 II 階段之結構勁度 .......................................................... - 43 -
6-4 消能能力比較 ......................................................................... - 46 -
6-4-1 開槽長短與幾何位置對消能量之影響 ......................... - 46 -
6-4-2 摩擦消能機制 ................................................................. - 48 -
6-4-3 能量消散比 ..................................................................... - 49 -
6-4-4 消能能力折減 ................................................................. - 50 -
6-5 設計方法.................................................................................. - 51 -
第七章結論與建議 ......................................................................... - 54 -
7-1 結論 .......................................................................................... - 54 -
VIII
7-2 建議 .......................................................................................... - 55 -
參考文獻 .............................................................................................. - 56 -
圖表與照片 .......................................................................................... - 60 -
參考文獻 [ 1 ] Christopoulos, C., Filiatrault, A., Uang, C.M. and Folz,
B., ”Posttensioned Energy Dissipating Connections for
Moment-Resisting Frames”, Journal of Structure Engineering, Vol. 108,
No. 9, pp. 1111-1120 (2002)
[ 2 ] Priestley, M.J.N. and Tao, J. R., “Seismic Response of Precast
Prestressed Concrete frames with partially Debonded Tendons”, PCI
Journal, Jan.-Feb., pp.58-66 (1993)
[ 3 ] Ricles, J. M., Sause, R., Garlock, M. M. and Zhao, C.,
“Posttensioned Seismic-Resistant Connections for Steel Frames”, Journal
of Structural Engineering, Vol. 127, No. 2, pp. 0113-0121 (2001)
[ 4 ] Garlock, M. M., Ricles, J. M. and Sause, R., “Cyclic Load Tests and
Analysis of Bolted Top-and-Seat Angle Connections”, Journal of
Structural Engineering, Vol. 129, No. 12, pp.1615-1625(2003)
[ 5 ] Garlock, M. M., Ricles, J. M. and Sause, R., “Experimental Studies
of Full-Scale Posttensioned Steel Connections”, Journal of Structural
Engineering, Vol. 131, No. 3, pp. 438-448 (2005)
[ 6 ] Christopoulos, C., Pampanin, S., and Priestley, M. J. N.,
“Performanci-Based Seismic Response of Frame Structure Including
Residual Deformations. Part I:Single-Degree of Freedom Systems”,
Journal of Earthquake Engineering, Vol. 7, No. 1, pp.97-118 (2003)
[ 7 ] Garlock, M. M., Ricles, J. M. and Sause, R., “Behavior and Design
of Posttensioned Steel Frames Systems”, Journal of Structural
Engineering, Vol. 133, No. 3, pp. 389-399 (2007)
- 57 -
[ 8 ] Kim, H. J. and Christopoulos, C., “Friction Damped Posttensioned
Self-Centering Steel Moment-Resisting Frames”, Journal of Structural
Engineering, Vol. 134, No. 11, pp. 1768-1779 (2008)
[ 9 ] Rojas, P., Ricles, J. M. and Sause, R., “Seismic Performance of
Post-Tensioned Steel Moment Resisting Frames With Friction Device”,
Journal of Structural Engineering, Vol. 131, No. 4, pp. 529-540 (2005)
[ 10 ] Michael Wolski, Ricles, J. M. and Sause, R., “Experimental
Study of a Self-Centering Beam-Column Connection with Bottom Flange
Friction Device”, Journal of Structural Engineering, Vol. 135, No. 5, pp.
479-488 (2009)
[ 11 ] Englekirk, R. E., “Design-Construction of The
Paramount-A39-Story Prestressed Concrete Apartment Building”, PCI
Journal, July-August, pp. 56-71 (2002)
[ 12 ] Chou, C. C., Chen, J. H., Chen, Y. C. and Tsai, K. C.,
“Evaluating Performance of Post-Tensioned steel Connections with
Strands and Reduced Flange Plates”, Journal of Earthquake Engineering
and Structural Dynamics, Vol. 35, Issue. 9, pp. 1167-1185 (2006)
[ 13 ] Ou, Y. C., Chiewanichakorn, M., Aref, A. J. and Lee, G.
C., ”Seismic Performance of Segmental Precast Unbonded Posttensioned
Concrete Bridge Columns”, Journal of Structural Engineering, Vol. 133,
pp. 1636-1647 (2007)
[ 14 ] Palermo, A., Pampanin, S. and Marriott, D. “Design, Modeling,
and Experimental Response of Seismic Resistant Bridge Piers with
Posttensioned Dissipating Connections”, Journal of Structural
Engineering, Vol. 133, pp. 1647-1661 (2007)
[ 15 ] Pampanin, S., Priestly, M. J. N., and Sritharan, N., “Analytical
- 58 -
Modeling of the Seismic Behavior of Precast Concrete Frames Designed
with Ductile Connections.” Journal of Earthquake Engineering, Vol. 5,
No. 3, pp. 329-367 (2001)
[ 16 ] Marriott, D., Pampanin, S. and Palermo, A., “Quasi-Static and
Pseudo-Dynamic Testing of Unbonded Post-Tensioned Rocking Bridge
Piers with External Replaceable Dissipaters”, Journal of Earthquake
Engineering and Structural Dynamics, Vol. 38, Issue, 3. pp.331-354
(2009)
[ 17 ] Marriott, D., Pampanin, S. and Palermo, A., “Biaxial Testing of
Unbonded Post-Tensioned Rocking Bridge Piers with External
Replaceable Dissipaters”, Journal of Earthquake Engineering and
Structural Dynamics, Vol.40, Issue. 15, pp. 1723-1741 (2011)
[ 18 ] Christopoulos, C., Filiatrault, A. and Folz, B., “Seismic Response
of Self-Centring Hysteretic SDOF Systems” Journal of Earthquake
Engineering and Structural Dynamics, Vol. 31, Issue. 5, pp. 1131-1150
(2002)
[ 19 ] Priestley, M. J. N., “Direct Displacement-Based Design of
Precast/Prestressed Concrete Buildings” PCI Journal, Nov-Dec, pp. 66-80
(2002)
[ 20 ] American Institute of Steel Construction, Qualifying Cyclic Tests
of Beam-To-Column Connections, Loading History (2005)
[ 21 ] 陳清泉,「預鑄房屋有關耐震設計、施工及檢驗規範之調查及
研究」,財團法人台灣營建研究中心 (1982)
[ 22 ] 曾士賓,「預力預鑄構架耐震能力之擬彈性法評估」,國立台
- 59 -
灣大學土木工程研究所,碩士論文,民國九十年
[ 23 ] 莊勝智,「含預力構架耐震行為研究」,國家實驗研究院國家
地震工程研究中心報告,編號NCREE-04-024,民國九十三年
[ 24 ] 黃崇豪,「預力鋼梁接CFT 柱接頭含消能鋼棒之行為」,國立
交通大學土木工程研究所,碩士論文,民國九十四年
[ 25 ] 林煥文,「鋼管混凝土柱基礎耐震行為研究」,國立中央大學
土木工程研究所,碩士論文,民國九十一年
[ 26 ] 張家彰,「加勁鋼管混凝土柱基礎受力模式分析」,國立中央
大學土木工程研究所,碩士論文,民國九十三年
[ 27 ] 萬進豪,「預力式預鑄鋼筋混凝土柱與基礎接合承載行為」,
國立中央大學土木工程研究所,碩士論文,民國九十四年
[ 28 ] 林昌駿,「預力式預鑄鋼筋混凝土柱基礎與構架耐震行為研
究」,國立中央大學土木工程研究所,碩士論文,民國九十五年
[ 29 ] 田正平,「預力式預鑄鋼筋混凝土柱與基礎接合雙向承載行為
研究」,國立中央大學土木工程研究所,碩士論文,民國九十六年
[ 30 ] 蔡克銓,「三角形鋼板消能器之塑性模型與耐震行為」,中國
土木水利工程學刊,民國八十五年
指導教授 許協隆(Hsieh-Lung Hsu) 審核日期 2012-5-5 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare