博碩士論文 983204031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.218.236.85
姓名 吳家安(Jia-an Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 胎盤源多功能細胞分化成類神經細胞之訊息傳導途徑研究
(Elucidate the signaling pathway of PDMCs (Placenta-Derived Multipotent Cells) differentiated into Neuron-like cells.)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來幹細胞的研究於再生醫學上掀起一股熱潮,而常見用於治療的骨髓幹細胞及胚胎幹細胞卻存在著具侵入性取得及道德上的爭議,突顯出開發替代的治療細胞極為重要。而胎盤源多功能細胞(Placenta-Derived Multipotent Cells, PDMCs)具有分化成脂肪細胞、成骨細胞、肝細胞及神經細胞等優越分化能力,且取得來源不具道德的問題,是較佳的成體間葉幹細胞來源。
由於蛋白質磷酸化迅速及可逆的調控特性,能夠即時地反應細胞受到刺激時所產生的訊息傳遞情形。在先前研究指出,胎盤源多功能細胞受3-異丁基-1-甲基黄嘌呤(IBMX)刺激後可分化成神經細胞,因此本研究嘗試利用磷酸化蛋白質體學技術,研究當PDMC細胞受到IBMX刺激時,細胞內所誘發的蛋白質磷酸化變異及其中訊息傳遞路徑的調控,並探討可能的生理意義。首先利用immobilized metal affinity chromatography (IMAC)純化細胞中的磷酸化蛋白,再經由二維膠體電泳分析,並將這些受藥物刺激後磷酸化的蛋白質進行質譜儀進行鑑定再輔以文獻分析,推測出可能的訊息傳遞網絡。再透過西方墨點法的驗證,顯示IBMX的刺激確實會透過磷酸化調控的方式,以PKC/ERK/c-Jun的路徑進行調控,可能是藉由此訊息傳導路徑促進胎盤源多功能細胞分化成神經細胞,而其他如細胞形態改變及細胞骨架的重組可能也有其他的訊息傳導路徑參與。未來可望針對這些結果做更進一步的研究以找出IBMX刺激後所制動的訊息傳導路徑及其啟動之基因,並以這些資訊來幫助胎盤幹細胞專一性的分化成特定的神經細胞並應用於臨床治療。
摘要(英) In recent years, the research of regenerative medicine focus on the studying and utilizing stem cells. Current sources of stem cells include embryonic stem cells (ESCs) and adult stem cells (ASCs). However, there are numerous ethical concerns exist in ESCs and as to ASCs, which usually obtained from the bone marrow through an invasive procedure. The placenta-derived multipotent cells (PDMCs) are an ethically uncontroversial source, and the cells exhibit the ability to differentiate into many cellular types, including osteoblasts, adipocytes, hepatocytes, and neurons. Therefore, PDMCs could be the considerable alternative resources of mesenchymal stem cell.
It has been found that under 3-isobutyl-1-methylxanthine (IBMX) inductions, the PDMCs were capable of differentiating into neural-like cells; however, the signal transduction scenario and molecular mechanism behind the phenomenon are still unknown, therefore, we attempts to study this process by phosphoproteomic approaches. After phosphoprotein enrichment with IMAC from IBMX induced PDMCs, two dimensional gel electrophoresis following LC/MS-MS identification were enrolled and the phosphorylated proteins specific induced by IBMX were identified and analyzed by the signal transduction database tool.
After Western blot validation and literature searches, we found that IBMX would induce phosphorylation of protein kinase C (PKC), extracellular signal-regulated kinase (ERK), and c-Jun and their sequential phosphorylation might involve in the signal transduction in the neural cell differentiation. Besides, cell morphology changes would also be induced through dephosphorylation of other proteins such as Heat Shock Protein 27 (HSP27). However, the phosphorylation regulations and their physiological roles need to be further validated. The information provide by this thesis may help us decipher the mechanism of neuron differentiation and may contribute to the neural degenerative disease treatment in the future.
關鍵字(中) ★ 胎盤源多功能細胞
★ 訊息傳導
★ 神經誘導分化
關鍵字(英) ★ PDMC
★ neural differentiation
★ signal transduction
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 ix
表目錄 ix
第一章 緒論 1
第二章 文獻回顧 2
2.1 幹細胞 2
2.1.1 幹細胞研究背景 2
2.1.2 何謂幹細胞 3
2.1.3 幹細胞的分類 4
2.1.4 幹細胞的來源 5
2.1.5胎盤源多功能細胞(placenta-derived multipotent cells,PDMCs) 7
2.1.6 胎盤源多功能細胞的神經誘導分化 8
2.2 細胞訊息傳遞 9
2.2.1 細胞訊息傳遞系統的基本特徵 10
2.2.2 神經幹細胞分化成神經寡突細胞之訊息傳導路徑 11
2.3 磷酸化蛋白質體學 14
2.3.1 蛋白質體學 (Proteomics) 14
2.3.2 磷酸化蛋白質介紹 16
2.3.3 磷酸化分子純化 19
2.3.3.1 免疫沉降法 20
2.3.3.2 親和純化法 21
2.3.3.3化學修飾法 24
2.3.4 質譜分析 24
2.4 研究目的 25
第三章 材料與方法 26
3.1 實驗設備 26
3.2 實驗藥品 27
3.3 實驗方法 29
3.3.1 細胞培養技術 29
3.3.2 免疫組織化學染色(Immunohistochemistry,IHC) 31
3.3.2 蛋白質定量分析 32
3.3.3 磷酸化蛋白純化 33
3.3.4 二維膠體電泳法 (two-dimensional electrophoresis; 2-DE) 34
3.3.5 蛋白質膠內酵素水解(In-gel digestion) 39
3.3.6 蛋白質溶液內酵素水解(In-solution digestion) 40
3.3.7 蛋白質身分鑑定 40
3.3.8 西方墨點分析法(Western Blotting Analysis) 41
第四章 結果與討論 45
4.1 細胞型態的觀察及免疫組織化學染色(IHC) 45
4.2 磷酸化蛋白的純化 46
4.3 二維膠體電泳分析 48
4.3.1 純化後的磷酸化蛋白於二維膠體電泳分佈 48
4.3.2 不同誘導時間經IMAC純化磷酸化蛋白後的二維電泳膠圖 49
4.3.3 二維膠體電泳結果分析 53
4.4 西方墨電法驗證 56
4.5 添加PKC及ERK的抑制劑測試結果 60
4.6 推測可能的訊息傳導途徑: 66
4.6.1 PKC/ERK/c-Jun 66
4.6.2 HSP27/cytoskeleton protein 68
第五章 結論與建議 70
參考文獻 72
附錄 液相層析串聯式質譜(LC-MS/MS)與SwissProt資料庫比對結果 80
附錄 溶液內酵素水解結果比對KEGG MAPK pathway圖 88
附錄 與ERK1與ERK2具有交互作用之基因差異 89
參考文獻 1. Bloom, F. E., Breakthroughs 1999. Science 1999, 286 (5448), 2267.
2. Shamblott, M. J.; Axelman, J.; Wang, S.; Bugg, E. M.; Littlefield, J. W.; Donovan, P. J.; Blumenthal, P. D.; Huggins, G. R.; Gearhart, J. D., Derivation of pluripotent stem cells from cultured human primordial germ cells. Proceedings of the National Academy of Sciences 1998, 95 (23), 13726-13731.
3. Thomson, J. A.; Itskovitz-Eldor, J.; Shapiro, S. S.; Waknitz, M. A.; Swiergiel, J. J.; Marshall, V. S.; Jones, J. M., Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 1998, 282 (5391), 1145-1147.
4. Wobus, A. M.; Boheler, K. R., Embryonic Stem Cells: Prospects for Developmental Biology and Cell Therapy. Physiological Reviews 2005, 85 (2), 635-678.
5. Pittenger, M. F.; Mackay, A. M.; Beck, S. C.; Jaiswal, R. K.; Douglas, R.; Mosca, J. D.; Moorman, M. A.; Simonetti, D. W.; Craig, S.; Marshak, D. R., Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science 1999, 284 (5411), 143-147.
6. Watt, F. M.; Hogan; M., B. L., Out of Eden: Stem Cells and Their Niches. Science 2000, 287 (5457), 1427-1430.
7. Friedenstein, A. J.; Gorskaja, J. F.; Kulagina, N. N., Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976, 4 (5), 267-74.
8. Fernandez, M.; Simon, V.; Herrera, G.; Cao, C.; DelFavero, H.; Minguell, J. J., Detection of stromal cells in peripheral blood progenitor cell collections from breast cancer patients. Bone Marrow Transplantation 1997, 20 (4), 265-271.
9. Erices, A.; Conget, P.; Minguell, J. J., Mesenchymal progenitor cells in human umbilical cord blood. British Journal of Haematology 2000, 109 (1), 235-242.
10. Miura, M.; Gronthos, S.; Zhao, M.; Lu, B.; Fisher, L. W.; Robey, P. G.; Shi, S., SHED: Stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences 2003, 100 (10), 5807-5812.
11. Yen, B. L.; Huang, H. I.; Chien, C. C.; Jui, H. Y.; Ko, B. S.; Yao, M.; Shun, C. T.; Yen, M. L.; Lee, M. C.; Chen, Y. C., Isolation of multipotent cells from human term placenta. Stem Cells 2005, 23 (1), 3-9.
12. Chien, C. C.; Yen, B. L.; Lee, F. K.; Lai, T. H.; Chen, Y. C.; Chan, S. H.; Huang, H. I., In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells. Stem Cells 2006, 24 (7), 1759-1768.
13. Renfranz, P. J.; Cunningham, M. G.; McKay, R. D. G., Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain. Cell 1991, 66 (4), 713-729.
14. Yen, B. L.; Chien, C. C.; Chen, Y. C.; Chen, J. T.; Huang, J. S.; Lee, K.; Huang, H. I., Placenta-derived multipotent cells differentiate into neuronal and glial cells in vitro. Tissue Eng. Part A 2008, 14 (1), 9-17.
15. Wang, T. T.; Tio, M.; Lee, W.; Beerheide, W.; Udolph, G., Neural differentiation of mesenchymal-like stem cells from cord blood is mediated by PKA. Biochem. Biophys. Res. Commun. 2007, 357 (4), 1021-1027.
16. Tio, M.; Tan, K. H.; Lee, W.; Wang, T. T.; Udolph, G., Roles of db-cAMP, IBMX and RA in Aspects of Neural Differentiation of Cord Blood Derived Mesenchymal-Like Stem Cells. PLoS One 2010, 5 (2).
17. Mondal, D.; Pradhan, L.; LaRussa, V. F., Signal transduction pathways involved in the lineage-differentiation of NSCs: Can the knowledge gained from blood be used in the brain? Cancer Invest. 2004, 22 (6), 925-943.
18. Ramos, J. W., The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int. J. Biochem. Cell Biol. 2008, 40 (12), 2707-2719.
19. Burnett, G.; Kennedy, E. P., THE ENZYMATIC PHOSPHORYLATION OF PROTEINS. Journal of Biological Chemistry 1954, 211 (2), 969-980.
20. Nelson, T. J.; Sun, M. K.; Hongpaisan, J.; Alkon, D. L., Insulin, PKC signaling pathways and synaptic remodeling during memory storage and neuronal repair. Eur. J. Pharmacol. 2008, 585 (1), 76-87.
21. Omerovic, J.; Laude, A. J.; Prior, I. A., Ras proteins: paradigms for compartmentalised and isoform-specific signalling. Cell. Mol. Life Sci. 2007, 64 (19-20), 2575-2589.
22. Venter, J. C.; Adams, M. D.; Myers, E. W.; Li, P. W.; Mural, R. J.; Sutton, G. G.; Smith, H. O.; Yandell, M.; Evans, C. A.; Holt, R. A.; Gocayne, J. D.; Amanatides, P.; Ballew, R. M.; Huson, D. H.; Wortman, J. R.; Zhang, Q.; Kodira, C. D.; Zheng, X. H.; Chen, L.; Skupski, M.; Subramanian, G.; Thomas, P. D.; Zhang, J.; Gabor Miklos, G. L.; Nelson, C.; Broder, S.; Clark, A. G.; Nadeau, J.; McKusick, V. A.; Zinder, N.; Levine, A. J.; Roberts, R. J.; Simon, M.; Slayman, C.; Hunkapiller, M.; Bolanos, R.; Delcher, A.; Dew, I.; Fasulo, D.; Flanigan, M.; Florea, L.; Halpern, A.; Hannenhalli, S.; Kravitz, S.; Levy, S.; Mobarry, C.; Reinert, K.; Remington, K.; Abu-Threideh, J.; Beasley, E.; Biddick, K.; Bonazzi, V.; Brandon, R.; Cargill, M.; Chandramouliswaran, I.; Charlab, R.; Chaturvedi, K.; Deng, Z.; Francesco, V. D.; Dunn, P.; Eilbeck, K.; Evangelista, C.; Gabrielian, A. E.; Gan, W.; Ge, W.; Gong, F.; Gu, Z.; Guan, P.; Heiman, T. J.; Higgins, M. E.; Ji, R.-R.; Ke, Z.; Ketchum, K. A.; Lai, Z.; Lei, Y.; Li, Z.; Li, J.; Liang, Y.; Lin, X.; Lu, F.; Merkulov, G. V.; Milshina, N.; Moore, H. M.; Naik, A. K.; Narayan, V. A.; Neelam, B.; Nusskern, D.; Rusch, D. B.; Salzberg, S.; Shao, W.; Shue, B.; Sun, J.; Wang, Z. Y.; Wang, A.; Wang, X.; Wang, J.; Wei, M.-H.; Wides, R.; Xiao, C.; Yan, C.; Yao, A.; Ye, J.; Zhan, M.; Zhang, W.; Zhang, H.; Zhao, Q.; Zheng, L.; Zhong, F.; Zhong, W.; Zhu, S. C.; Zhao, S.; Gilbert, D.; Baumhueter, S.; Spier, G.; Carter, C.; Cravchik, A.; Woodage, T.; Ali, F.; An, H.; Awe, A.; Baldwin, D.; Baden, H.; Barnstead, M.; Barrow, I.; Beeson, K.; Busam, D.; Carver, A.; Center, A.; Cheng, M. L.; Curry, L.; Danaher, S.; Davenport, L.; Desilets, R.; Dietz, S.; Dodson, K.; Doup, L.; Ferriera, S.; Garg, N.; Gluecksmann, A.; Hart, B.; Haynes, J.; Haynes, C.; Heiner, C.; Hladun, S.; Hostin, D.; Houck, J.; Howland, T.; Ibegwam, C.; Johnson, J.; Kalush, F.; Kline, L.; Koduru, S.; Love, A.; Mann, F.; May, D.; McCawley, S.; McIntosh, T.; McMullen, I.; Moy, M.; Moy, L.; Murphy, B.; Nelson, K.; Pfannkoch, C.; Pratts, E.; Puri, V.; Qureshi, H.; Reardon, M.; Rodriguez, R.; Rogers, Y.-H.; Romblad, D.; Ruhfel, B.; Scott, R.; Sitter, C.; Smallwood, M.; Stewart, E.; Strong, R.; Suh, E.; Thomas, R.; Tint, N. N.; Tse, S.; Vech, C.; Wang, G.; Wetter, J.; Williams, S.; Williams, M.; Windsor, S.; Winn-Deen, E.; Wolfe, K.; Zaveri, J.; Zaveri, K.; Abril, J. F.; Guigó, R.; Campbell, M. J.; Sjolander, K. V.; Karlak, B.; Kejariwal, A.; Mi, H.; Lazareva, B.; Hatton, T.; Narechania, A.; Diemer, K.; Muruganujan, A.; Guo, N.; Sato, S.; Bafna, V.; Istrail, S.; Lippert, R.; Schwartz, R.; Walenz, B.; Yooseph, S.; Allen, D.; Basu, A.; Baxendale, J.; Blick, L.; Caminha, M.; Carnes-Stine, J.; Caulk, P.; Chiang, Y.-H.; Coyne, M.; Dahlke, C.; Mays, A. D.; Dombroski, M.; Donnelly, M.; Ely, D.; Esparham, S.; Fosler, C.; Gire, H.; Glanowski, S.; Glasser, K.; Glodek, A.; Gorokhov, M.; Graham, K.; Gropman, B.; Harris, M.; Heil, J.; Henderson, S.; Hoover, J.; Jennings, D.; Jordan, C.; Jordan, J.; Kasha, J.; Kagan, L.; Kraft, C.; Levitsky, A.; Lewis, M.; Liu, X.; Lopez, J.; Ma, D.; Majoros, W.; McDaniel, J.; Murphy, S.; Newman, M.; Nguyen, T.; Nguyen, N.; Nodell, M.; Pan, S.; Peck, J.; Peterson, M.; Rowe, W.; Sanders, R.; Scott, J.; Simpson, M.; Smith, T.; Sprague, A.; Stockwell, T.; Turner, R.; Venter, E.; Wang, M.; Wen, M.; Wu, D.; Wu, M.; Xia, A.; Zandieh, A.; Zhu, X., The Sequence of the Human Genome. Science 2001, 291 (5507), 1304-1351.
23. Peng, X.; Xu, C.; Ren, H.; Lin, X.; Wu, L.; Wang, S., Proteomic Analysis of the Sarcosine-Insoluble Outer Membrane Fraction of Pseudomonas aeruginosa Responding to Ampicilin, Kanamycin, and Tetracycline Resistance. Journal of Proteome Research 2005, 4 (6), 2257-2265.
24. Lee, K. H., Proteomics: a technology-driven and technology-limited discovery science. Trends Biotechnol. 2001, 19 (6), 217-222.
25. Morandell, S.; Stasyk, T.; Grosstessner-Hain, K.; Roitinger, E.; Mechtler, K.; Bonn, G. K.; Huber, L. A., Phosphoproteomics strategies for the functional analysis of signal transduction. Proteomics 2006, 6 (14), 4047-4056.
26. Graves, J. D.; Krebs, E. G., Protein phosphorylation and signal transduction. Pharmacol. Ther. 1999, 82 (2-3), 111-121.
27. Hunter, T.; Sefton, B. M., Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proceedings of the National Academy of Sciences 1980, 77 (3), 1311-1315.
28. Zhang, H.; Zha, X. M.; Tan, Y.; Hornbeck, P. V.; Mastrangelo, A. J.; Alessi, D. R.; Polakiewicz, R. D.; Comb, M. J., Phosphoprotein analysis using antibodies broadly reactive against phosphorylated motifs. Journal of Biological Chemistry 2002, 277 (42), 39379-39387.
29. Reinders, J.; Sickmann, A., State-of-the-art in phosphoproteomics. Proteomics 2005, 5 (16), 4052-4061.
30. Thingholm, T. E.; Jensen, O. N.; Larsen, M. R., Analytical strategies for phosphoproteomics. Proteomics 2009, 9 (6), 1451-1468.
31. Gorg, A.; Weiss, W.; Dunn, M. J., Current two-dimensional electrophoresis technology for proteomics. Proteomics 2004, 4 (12), 3665-3685.
32. Stasyk, T.; Morandell, S.; Bakry, R.; Feuerstein, I.; Huck, C. W.; Stecher, G.; Bonn, G. K.; Huber, L. A., Quantitative detection of phosphoproteins by combination of two-dimensional difference gel electrophoresis and phosphospecific fluorescent staining. Electrophoresis 2005, 26 (14), 2850-2854.
33. Caspersen, M. B.; Qiu, J. L.; Zhang, X.; Andreasson, E.; Naested, H.; Mundy, J.; Svensson, B., Phosphorylation sites of Arabidopsis MAP kinase substrate 1 (MKS 1). Biochimica Et Biophysica Acta-Proteins and Proteomics 2007, 1774 (9), 1156-1163.
34. Kaufmann, H.; Bailey, J. E.; Fussenegger, M., Use of antibodies for detection of phosphorylated proteins separated by two-dimensional gel electrophoresis. Proteomics 2001, 1 (2), 194-199.
35. Nousiainen, M.; Silljé, H. H. W.; Sauer, G.; Nigg, E. A.; Körner, R., Phosphoproteome analysis of the human mitotic spindle. Proceedings of the National Academy of Sciences 2006, 103 (14), 5391-5396.
36. Yeung, Y. G.; Berg, K. L.; Pixley, F. J.; Angeletti, R. H.; Stanley, E. R., Protein tyrosine phosphatase-1C is rapidly phosphorylated in tyrosine in macrophages in response to colony stimulating factor-1. J. Biol. Chem. 1992, 267 (33), 23447-23450.
37. Pandey, A.; Podtelejnikov, A. V.; Blagoev, B.; Bustelo, X. R.; Mann, M.; Lodish, H. F., Analysis of receptor signaling pathways by mass spectrometry: Identification of Vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proceedings of the National Academy of Sciences of the United States of America 2000, 97 (1), 179-184.
38. Sevecka, M.; MacBeath, G., State-based discovery: a multidimensional screen for small-molecule modulators of EGF signaling. Nat Meth 2006, 3 (10), 825-831.
39. Andersson, L.; Porath, J., Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Analytical Biochemistry 1986, 154 (1), 250-254.
40. Dunn, J. D.; Reid, G. E.; Bruening, M. L., Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrometry Reviews 2010, 29 (1), 29-54.
41. Kokubu, M.; Ishihama, Y.; Sato, T.; Nagasu, T.; Oda, Y., Specificity of Immobilized Metal Affinity-Based IMAC/C18 Tip Enrichment of Phosphopeptides for Protein Phosphorylation Analysis. Analytical Chemistry 2005, 77 (16), 5144-5154.
42. Trinidad, J. C.; Specht, C. G.; Thalhammer, A.; Schoepfer, R.; Burlingame, A. L., Comprehensive Identification of Phosphorylation Sites in Postsynaptic Density Preparations. Molecular & Cellular Proteomics 2006, 5 (5), 914-922.
43. Nawrocki, J.; Dunlap, C.; Li, J.; Zhao, J.; McNeff, C. V.; McCormick, A.; Carr, P. W., Part II. Chromatography using ultra-stable metal oxide-based stationary phases for HPLC. Journal of Chromatography A 2004, 1028 (1), 31-62.
44. Thingholm, T. E.; Jorgensen, T. J. D.; Jensen, O. N.; Larsen, M. R., Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat. Protocols 2006, 1 (4), 1929-1935.
45. Thingholm, T. E.; Jensen, O. N.; Robinson, P. J.; Larsen, M. R., SIMAC (Sequential Elution from IMAC), a Phosphoproteomics Strategy for the Rapid Separation of Monophosphorylated from Multiply Phosphorylated Peptides. Molecular & Cellular Proteomics 2008, 7 (4), 661-671.
46. Williamson, B. L.; Marchese, J.; Morrice, N. A., Automated Identification and Quantification of Protein Phosphorylation Sites by LC/MS on a Hybrid Triple Quadrupole Linear Ion Trap Mass Spectrometer. Molecular & Cellular Proteomics 2006, 5 (2), 337-346.
47. Dubrovska, A.; Souchelnytskyi, S., Efficient enrichment of intact phosphorylated proteins by modified immobilized metal-affinity chromatography. Proteomics 2005, 5 (18), 4678-4683.
48. Guerrera, I. C.; Predic-Atkinson, J.; Kleiner, O.; Soskic, V.; Godovac-Zimmermann, J., Enrichment of Phosphoproteins for Proteomic Analysis Using Immobilized Fe(III)-Affinity Adsorption Chromatography. Journal of Proteome Research 2005, 4 (5), 1545-1553.
49. Machida, M.; Kosako, H.; Shirakabe, K.; Kobayashi, M.; Ushiyama, M.; Inagawa, J.; Hirano, J.; Nakano, T.; Bando, Y.; Nishida, E.; Hattori, S., Purification of phosphoproteins by immobilized metal affinity chromatography and its application to phosphoproteome analysis. Febs Journal 2007, 274 (6), 1576-1587.
50. Muller, G.; Ayoub, M.; Storz, P.; Rennecke, J.; Fabbro, D.; Pfizenmaier, K., PKC ZETA IS A MOLECULAR SWITCH IN SIGNAL-TRANSDUCTION OF TNF-ALPHA, BIFUNCTIONALLY REGULATED BY CERAMIDE AND ARACHIDONIC-ACID. Embo Journal 1995, 14 (9), 1961-1969.
51. Varticovski, L.; Chahwala, S. B.; Whitman, M.; Cantley, L.; Schindler, D.; Chow, E. P.; Sinclair, L. K.; Pepinsky, R. B., Location of sites in human lipocortin I that are phosphorylated by protein tyrosine kinases and protein kinases A and C. Biochemistry 1988, 27 (10), 3682-3690.
52. Chang, B. Y.; Chiang, M.; Cartwright, C. A., The Interaction of Src and RACK1 Is Enhanced by Activation of Protein Kinase C and Tyrosine Phosphorylation of RACK1. Journal of Biological Chemistry 2001, 276 (23), 20346-20356.
53. Kostenko, S.; Moens, U., Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cellular and molecular life sciences : CMLS 2009, 66 (20), 3289-307.
54. Shapland, C.; Hsuan, J. J.; Totty, N. F.; Lawson, D., Purification and properties of transgelin: a transformation and shape change sensitive actin-gelling protein. The Journal of Cell Biology 1993, 121 (5), 1065-1073.
55. Abisambra, J. F.; Blair, L. J.; Hill, S. E.; Jones, J. R.; Kraft, C.; Rogers, J.; Koren, J.; Jinwal, U. K.; Lawson, L.; Johnson, A. G.; Wilcock, D.; O’’Leary, J. C.; Jansen-West, K.; Muschol, M.; Golde, T. E.; Weeber, E. J.; Banko, J.; Dickey, C. A., Phosphorylation Dynamics Regulate Hsp27-Mediated Rescue of Neuronal Plasticity Deficits in Tau Transgenic Mice. The Journal of Neuroscience 2010, 30 (46), 15374-15382.
56. Pulverer, B. J.; Kyriakis, J. M.; Avruch, J.; Nikolakaki, E.; Woodgett, J. R., Phosphorylation of c-jun mediated by MAP kinases. Nature 1991, 353 (6345), 670-674.
57. Essayan, D. M., Cyclic nucleotide phosphodiesterases. Journal of Allergy and Clinical Immunology 2001, 108 (5), 671-680.
58. Hamm, H. E., The many faces of G protein signaling. Journal of Biological Chemistry 1998, 273 (2), 669-672.
59. Boulton, T. G.; Nye, S. H.; Robbins, D. J.; Ip, N. Y.; Radzlejewska, E.; Morgenbesser, S. D.; DePinho, R. A.; Panayotatos, N.; Cobb, M. H.; Yancopoulos, G. D., ERKs: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 1991, 65 (4), 663-675.
60. Lloyd, A., Distinct functions for ERKs? Journal of Biology 2006, 5 (5), 13.
61. Lefloch, R.; Pouyssegur, J.; Lenormand, P., Single and combined silencing of ERK1 and ERK2 reveals their positive contribution to growth signaling depending on their expression levels. Molecular and Cellular Biology 2008, 28 (1), 511-527.
62. Mounier, N.; Arrigo, A. P., Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress & Chaperones 2002, 7 (2), 167-176.
指導教授 陳文逸(Wen-yih Chen) 審核日期 2012-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明