參考文獻 |
[1] I. S. Yeo, J. E. Oh, L. Jeong, T. S. Lee, S. J. Lee, W. H. Park and B. M. Min, “Collagen-based biomimetic nanofibrous scaffolds: Preparation and characterization of Collagen/Silk fibroin bicomponent nanofibrous structures,” Biomacromolecules, 9, 1106-1116, 2008.
[2] Q. P. Pham, U. Sharma, and A. G. Mikos, “Electrospinning of polymeric nanofibers for tissue engineering applications: A review”, Tissue Eng. 12, 1197-1211, 2006.
[3] X. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar and L. A. Samuelson, “Electrospun nanofibrous membranes for highly sensitive optical sensors,” Nano Lett. 2, 1273-1275, 2002.
[4] W. E. Teo and S. Ramakrishna, “A review on electrospinning design and nanofibre assemblies,” Nanotechnology, 17, R89-106, 2006.
[5] A. L. Yarin and E. Zussman, “Upward needleless electrospinning of multiple nanofibers,” Polymer, 45, 2977-2980, 2004.
[6] Y. Liu, and J. H. He, “Bubble electrospinning for mass production of nanofibers,” Int. J. Nonlin. Sci. Num. Sim. 8, 393-396, 2007.
[7] X. Wang, H. Niu, T. Lin and X. Wang, “Needleless electrospinning of nanofibers with a conical wire coil,” Polym. Eng. Sci. 49, 1582-1586, 2009.
[8] A. L. Yarin, W. Kataphinan and D. H. Reneker, “Branching in electrospinning of nanofibers,” J. Appl. Phys. 98, 064501-12, 2005.
[9] D. H. Reneker, A. L. Yarin, H. Fong and S. Koombhongse, “Bending instability of electrically charged liquid jets of polymer solutions in electrospinning,” J. Appl. Phys. 87, 4531-4547, 2000.
[10] J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen and N. C. Beck Tan, “Controlled deposition of electrospun poly(ethylene oxide) fibers,” Polymer, 42, 8163-8170, 2001.
[11] A. Vaseashta, “Controlled formation of multiple taylor cones in electrospinning process,” Appl. Phys. Lett. 90, 093115-3, 2007.
[12] D. Sun, C. Chang, S. Li and L. Lin, “Near-field electrospinning,” Nano Lett. 6, 839-842, 2006.
[13] C. Chang, K. Limkrailassiri and L. Lin, “Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns,” Appl. Phys. Lett. 93, 123111-3, 2008.
[14] C. Chang, V. H. Tran, J. Wang, Y. K. Fuh and L. Lin, “Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency,” Nano Lett. 10 726-731, 2010.
[15] D. Li and Y. Xia, “Electrospinning of nanofibers:reinventing the wheel,” Adv. Mater. 16, 1151–70, 2004.
[16] W. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan and F. K. Ho, “Electrospun nanofibrous structure: a novel scaffold for tissue engineering,” J. Biomed. Mater. Res. 60, 613–21, 2002.
[17] H. Liu, J. Kameoka, D. A. Czaplewski and H. G. Craighead, “Polymeric nanowire chemical sensor,” Nano Lett. 4, 671–5, 2004.
[18] M. M. Bergshoef and J. Vancso, “Transparent nanocomposites with ultrathin electrospun nylon-4,6 fiber reinforcement,” Adv. Mater. 11, 1362–5, 1999.
[19] W. Reisner, N. B. Larsen, A. Silahtaroglu, A. Kristensen, N. Tommerup, J. O. Tegenfeldt and H. Flyvbjerg, “Single-molecule denaturation mapping of DNA in nanofluidic channels,” Proc. Natl. Acad. Sci. USA. 107, 13294-9, 2010.
[20] S. L. Levy, J. T. Mannion, J. Cheng, C. H. Reccius and H. G. Craighead, “Entropic unfolding of DNA molecules in nanofluidic channels,” Nano Lett. 8, 3839-44, 2008.
[21] G. Salieb-Beugelaar, J. Teapal, J. van Nieuwkasteele, D. WijnperleÌ, J. O. Tegenfeldt, F. Lisdat, A. van den Berg and J. C. T. Eijkel, “Field-dependent DNA mobility in 20 nm high nanoslits,” Nano Lett. 8, 1785-90, 2008.
[22] L. J. Guo, X. Cheng, and C. F. Chou, “Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching,” Nano Lett. 4, 69-73, 2004.
[23] F. H. J. van der Heyden, D. J. Bonthuis, D. Stein, C. Meyer, and C. Dekker, “Electrokinetic energy conversion efficiency in nanofluidic channels,” Nano Lett. 6, 2232-2237, 2006.
[24] F. H. J. van der Heyden, D. J. Bonthuis, D. Stein, C. Meyer, and C. Dekker, “Power generation by pressure-driven transport of ions in nanofluidic channels,” Nano Lett. 7, 1022-1025, 2007.
[25] H. T. Hoang, I. M. Segers-Nolten, J.W. Berenschot, M. J. de Boer, N. R. Tas, J. Haneveld, and M. C. Elwenspoek, “Fabrication and interfacing of nanochannel devices for single-molecule studies,” J. Micromech. Microeng. 19, 065017, 2009.
[26] J. Perry and S. Kandlikar, “Review of fabrication of nanochannels for single phase liquid flow,” Microfluid. Nanofluid. 2, 185-193, 2006.
[27] Q. Xia, K. J. Morton, R. H. Austin, and S. Y. Chou, “Sub-10 nm self-enclosed self-limited nanofluidic channel arrays,” Nano Lett. 8, 3830-3833, 2008.
[28] C. Vieu, F. Carcenac, A. P´epin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: Resolution limits and applications,” Appl. Surf. Sci. 164, 111-117, 2000.
[29] O. C´espedes, S. M. Watts, J. M. D. Coey, K. Dorr, and M. Ziese, “Magnetoresistance and electrical hysteresis in stable half-metallic La0.7Sr0.3MnO3 and Fe3O4 nanoconstrictions,” Appl. Phys. Lett. 87, 083102, 2005.
[30] T. Arnal, R. Soulimane, A. Aassime, M. Bibes, Ph. Lecoeur, A. M. Haghiri-Gosnet, B. Mercey, A. V. Khvalkovskii, A. K. Zvezdin, and K. A. Zvezdin, “Magnetic nanowires patterned in the La2/3Sr1/3MnO3 half-metal,” Microelectron. Eng. 78–79, 201-205, 2005.
[31] R. Garcia, M. Calleja, and H. Rohrer, “Patterning of silicon surfaces with noncontact atomic force microscopy: Field-induced formation of nanometer-size water bridges,” J. Appl. Phys. 86, 1898-1903, 1999.
[32] E. S. Snow and P.M. Campbell, “AFM fabrication of sub-10-nanometer metal-oxide devices with in situ control of electrical properties,” Science 270, 1639-1641, 1995.
[33] A. A. Tseng, A. Notargiacomo, and T. P. Chen, “Nanofabrication by scanning probe microscope lithography: A review,” J. Vac. Sci. Technol. B 23, 877-894, 2005.
[34] I. Song, B. M. Kim, and G. Park, “Fabrication of a josephson junction using an atomic force microscope,” Appl. Phys. Lett. 76, 601-603, 2000.
[35] L. Pellegrino, Y. Yanagisawa, M. Ishikawa, T. Matsumoto, H. Tanaka, and T. Kawai, “(Fe,Mn)3O4 nanochannels fabricated by AFM local-oxidation nanolithography using Mo/Poly(methyl methacrylate) nanomasks,” Adv. Mater. 18, 3099-3104, 2006.
[36] C. Lee, E. H. Yang, N. V. Myung, and T. George, “A nanochannel fabrication technique without nanolithography,” Nano Lett. 3, 1339-1340, 2003.
[37] K. S. Chu, S. Kim, H. Chung, J. H. Oh, T. Y. Seong, B. H. An, Y. K. Kim, J. H. Park, Y. R. Do, and W. Kim, “Fabrication of monolithic polymer nanofluidic channels using nanowires as sacrificial templates,” Nanotechnology 21, 425302, 2010.
[38] D. Huh, K. L. Mills, X. Zhu, M. A. Burns, M. D. Thouless, and S. Takayama, “Tuneable elastomeric nanochannels for nanofluidic manipulation,” Nat. Mater. 6, 424-428, 2007.
[39] S. H. Lee, K. Limkrailassiri, Y. Gao, C. Chang, and L. Lin, “Chip-to-chip fluidic connectors via near-field electrospinning,” in Proceedings of MEMS, 61–64, 2007.
[40] Y. K. Fuh and H. S. Hsu, “Controlled formation of multiple jets and nanofibers deposition via near-field electrospinning process,” Int. J. Nonlinear Sci. Numer. Simul. 11, 123-130, 2010.
[41] G. I. Taylor, “Disintegration of water drops in an electric field,” Proc. R. Soc. London Ser. A, A280, 383-397, 1964.
[42] 連禮智、許宏碩、陳生展、傅尹坤, “近場電紡織技術應用於選擇性沉積奈米纖維之分析研究”, 中國機械工程學會第27屆全國學術研討會, 台北, 2010年12月10-11日
[43] Y. K. Fuh and H. S. Hsu, “Fabrication of monolithic polymer nanofluidic channels via near-field electrospun nanofibers as sacrificial templates,” J. Micro/Nanolith. Mems Moems. 10, 0430041-5, 2011.
[44] A. Y. N. Sofla and C. Martin, “Study of the vapor-assisted method for bonding PDMS and glass: Effect of the vapor source,” J. Micromech. Microeng. 20, 125024, 2010.
[45] K. Malecha, I. Gancarz, andW. Tylus, “Argon plasma-assisted PDMS-LTCC bonding technique for microsystem applications,” J.Micromech. Microeng. 20, 115006, 2010.
[46] J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21, 27-40, 2000.
[47] M. A. Eddings, M. A. Johnson, and B. K Gale, “Determining the optimal PDMS-PDMS bonding technique for microfluidic devices,” J. Micromech. Microeng. 18, 067001, 2008.
[48] Y. Zeng and D. J. Harrison, “Self-assembled colloidal arrays as three-dimensional nanofluidic sieves for separation of biomolecules on microchips,” Anal. Chem. 79, 2289-2295, 2007.
|