博碩士論文 943403039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:18.216.70.205
姓名 張家華(CHIA-HUA CHANG)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鎳-鈦熔射塗層之耐蝕與磨潤性能研究
(Study on Wear and Corrosion Resistances of Thermal Sprayed Ni-Ti Composite Coatings)
相關論文
★ 反應性磁控法濺鍍氮化鈦鎢薄膜磨潤行為研究★ 應用田口方法於發光二極體導線架 射出成型參數最佳化之研究
★ 應用田口方法於半導體晶圓盒製造最佳化★ 虛擬護理數位診斷模擬系統開發之研究
★ 虛擬射出成型試驗機之研究★ 藥柱疲勞特性與壽限評估模式之研究
★ 網際網路虛擬護理照護數位模擬系統之研究★ 虛擬實境應用於手部復健與電動輪椅模擬系統之研發
★ 縮尺發動機振動與疲勞壽限之研究★ 應用駕駛模擬器探討震動防撞警示系統之技術開發與研究
★ 虛擬實境應用於坐姿平衡訓練系統之研究★ 符合SCORM規範之射出成型數位學習系統建置與研究
★ 虛擬場景模組化與自動編輯系統開發之研究★ 虛擬內視鏡基礎技術訓練系統學習轉移之研究
★ 聚縮醛(POM)機械性質之射出成型條件最佳化研究★ A533與A508鋼材疲勞裂縫成長特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 金屬熔射為一種常見的鋼鐵材防蝕與硬面技術,金屬熔射法依熱源與材料的不同可區分為火焰線材(粉末)熔射法、電漿熔射法、電弧熔射法(arc spraying)、塑膠熔射及高速燃氣熔射法等(High Velocity Oxygen Fuel, HVOF)。相較於火焰熔射法,因電弧熔射法具有高堆疊率、高附著力與較低孔隙率,廣泛地應用於鋼鐵材防蝕、石化、汽車、模具與航太工業。燃氣速度可達600~2400米/秒的高速燃氣熔射法(HVOF)使熔射塗層的緻密性、氧化程度及附著力均獲得大幅改善,使熔射塗層可以應用於更嚴苛的作業環境。
本文旨在探討以熔射法製備鎳-鈦複合塗層之方法,並就塗層表面特性、微結構、磨潤特性與耐蝕性進行討論,論文第一部分以電弧熔射法製備鎳-鈦複合塗層,其中熔射鎳-鈦塗層係由二條同步進給之鎳線與鈦線經引弧、霧化後沉積於AISI 1020基材上形成。第二部分分別以化學鍍及噴霧乾燥法製備熔射用鎳-鈦複合粉末,以鈦粉末為核化學鍍鎳為殼之複合粉末,分為低鈦含量與高鈦含量二種,分別標記為Ni-Ti10與Ni-Ti30,奈米團聚之鎳鈦複合粉末則記為nano Ni-Ti。自製之鎳-鈦複合粉末再以高速燃氣熔射法製備塗層。熔射鎳-鈦塗層分別進行SEM/EDS,XRD及DTA分析,以探討熔射塗層表面性質,並利用電化學交流阻抗法與動電位極化曲線法進行鎳-鈦熔射塗層耐蝕性評估。磨潤試驗分別依ASTM D6425-99及ASTM G99規範進行磨耗試驗,以評估塗層的耐磨性能。
由電弧熔射複合塗層表面特性檢測結果顯示,以電弧熔射法成功地製備以鎳及鈦為基底,鎳-鈦合金及鎳-鈦介金屬為分散相的複合塗層。三組電弧熔射參數中以高電弧電流及電壓下(32V, 300A)較易形成介金屬相。複合塗層電化學實驗顯示鎳-鈦熔射複合塗層耐蝕性能主要受到熔射層組織與膜厚影響,熔射鎳的引入,改善了單一熔射鈦塗層微裂紋的缺陷,進而提升熔射鈦塗層的耐蝕性。磨潤實驗結果則顯示鈦金屬的引入,可大幅提升單一熔射鎳層的耐磨性能,相較於火焰熔射鎳塗層,耐磨性能提高了586倍之多。
由高速燃氣熔射複合塗層表面特性檢測結果顯示,以高速燃氣熔射法製備之塗層較電弧熔射法緻密。由XRD及DTA分析結果顯示,三種高速燃氣熔射塗層中以化學鍍鎳鈦複合粉末製備之塗層(Ni-Ti10與Ni-Ti30),含有鎳-鈦合金及鎳-鈦介金屬,以奈米團聚鎳鈦複合粉末製備之塗層(nano Ni-Ti),則無明確鎳-鈦合金及鎳-鈦介金屬發現。複合塗層耐蝕性實驗顯示,以高速燃氣熔射法製備之鎳-鈦複合塗層較電弧熔射法緻密,耐蝕性優於電弧熔射塗層。三種高速燃氣熔射塗層中以奈米鎳-鈦複合塗層較為緻密,耐蝕性亦最佳。三種高速燃氣熔射塗層之磨耗實驗結果顯示,以高速燃氣熔射法製備之鎳-鈦複合塗層較為均勻,磨耗實驗結果較為一致,三種高速燃氣熔射塗層中以高鈦含量之鎳-鈦複合塗層(Ni-Ti30)具有較佳耐磨性能。高速燃氣熔射法製備塗層之耐蝕性與耐磨性普遍優於電弧熔射法。
摘要(英) Thermal spraying is a well-developed coating technique in which metallic or non-metallic materials are melted and softened by either chemical or electrical energy and the molten droplets are subsequently atomized and impacted on a prepared substrate to develop a laminar coating.
In this study, we investigated the corrosion and wear performance of Ni-Ti composite coatings with distinct parameters and thermal spraing technology. In the first part, the coatings were prepared by arc spraying with the Ti and Ni wires fed synchronously. In the second part, we investigated Ni-Ti composite coatings deposited on AISI 1020 steel via HVOF spraying. The feedstock powders were prepared by either electro less plating (Ti powder clad with Ni) or spray drying (agglomeration of nanoscale Ni and Ti powders). We performed structural, surface morphological, and compositional analyses of the Ni-Ti composite coatings using microhardness, SEM/EDS, XRD, and DTA analysis. Electrochemical AC impedance and potentiodynamic polarization tests were carried out to examine the anti-corrosion performance of the coating. Ball-on-disc dry wear tests based on the ASTM G99 and ASTM D6425-99 standard were performed at room temperature to evaluate the anti-wear properties.
We found some intermetallic compounds such as TiNi3 and Ni-Ti alloy within the arc sprayed Ni-Ti composite coating. The wear resistance of the arc sprayed Ni-Ti composite coating is much better than that of the Ni-sprayed coating but slightly worse than that of the Ti-sprayed coating. The corrosion resistance of the arc-sprayed Ni-Ti coating is superior to that of Ti but worse than that of Ni. The corrosion and wear performance of the composite coating are greatly influenced by the coating microstructure and thickness.
The coating characterization tests of HVOF Ni-Ti coating indicated that Ni-Ti intermetallic compounds such as Ti3Ni4 were only found inside the Ni-Ti coatings with a high Ti content. The HVOF Ni-Ti coating prepared by agglomerated Ni-Ti nanopowder was oxidized to a greater degree than the other specimens. The AC impedance and potentiodynamic polarization test results showed that the Ni-Ti nanopowder exhibited the best corrosion resistance among the three Ni-Ti coatings. The wear test results indicated that the Ni-Ti 30 coating with its higher Ti content exhibited a better wear resistance than the other two. In general, the HVOF Ni-Ti composite coatings exhibited a better wear and corrosion resistance than those of arc spraying.
關鍵字(中) ★ 熔射
★ 耐腐蝕
★ 磨潤
★ 鎳-鈦
關鍵字(英) ★ Thermal spraying
★ Ni-Ti
★ Wear
★ Corrosion
論文目次 中文摘要..................................................I
中文摘要..................................................I
英文摘要..................................................Ⅳ
誌謝......................................................Ⅵ
目錄......................................................Ⅷ
圖目錄..................................................ⅩⅡ
表目錄..................................................ⅩⅦ
一前言....................................................1
1.1 熔射技術及其應用..................................... 2
1.1.1電漿熔射.............................................2
1.1.2 火焰線材粉末熔射....................................3
1.1.3 電弧熔射............................................4
1.1.4 高速燃氣熔射........................................7
1.1.5 冷噴塗..............................................7
1.1.6 自熔合金熱噴焊......................................9
1.1.2 鈦的特性及其應用...................................10
二、文獻回顧.............................................13
2.1 鎳-鈦塗層之製備與應用................................13
2.2 電弧熔射塗層之製備與應用.............................17
2.3 熔射複合塗層的製備方法...............................21
2.3.1 原材複合...........................................21
2.3.2 熔射製程控制.......................................23
2.3.3 塗層後處理.........................................26
2.3.4 雙層結構...........................................27
2.4 高速燃氧熔射(HVOF)塗層之製程及磨潤研究...............28
三、研究目的.............................................38
四、研究方法與實驗設備...................................41
4.1 研究方法.............................................41
4.2 實驗儀器與材料.......................................42
4.2.1 鎳鈦熔射塗層製備用設備.............................42
4.2.2塗層性質檢測與分析儀器..............................43
4.2.3 塗層磨潤與耐蝕性能檢測儀器.........................43
4.3鎳-鈦複合熔射粉末製備.................................44
4.3.1鎳-鈦化學鍍複合粉末製備.............................44
4.3.2奈米鎳-鈦團聚複合粉末製備...........................45
4.4熔射粉末性質檢測......................................45
4.4.1複合粉末ICP-AES 分析結果............................45
4.4.2複合粉末XRD分析結果.................................46
4.4.3複合粉末SEM觀察.....................................46
4.5鎳-鈦試片製備.........................................47
4.6 鎳-鈦塗層性質檢測....................................48
4.6.1 微硬度量測方法.....................................49
4.6.2 差示熱分析(Differential thermal analysis, DTA)實驗.49
4.6.3 SEM/EDS表面與截面分析..............................49
4.6.4 表面粗度量測.......................................49
4.6.5 XRD繞射分析........................................50
4.6.6 塗層附著力測試.....................................50
4.7 塗層耐蝕性能檢測.....................................51
4.7.1 AC交流阻抗量測試...................................51
4.7.2 動電位極化曲線量測.................................51
4.7.3鹽霧試驗............................................52
4.8 塗層磨潤特性研究.....................................52
4.8.1 鋼球-平板往復磨耗實驗(Ball on Plane Wear Test) ....52
4.8.2 鋼球-圓盤磨耗實驗(Ball on Disc wear test) .........52
五、結果與討論...........................................54
5.1 鎳-鈦熔射層性質檢測結果..............................54
5.1.1 鎳-鈦塗層SEM/EDS觀察結果...........................54
5.1.2 鎳-鈦熔射塗層微硬度值量測結果......................55
5.1.3鎳-鈦熔射塗層XRD分析結果............................57
5.1.4 DTA熱差分析結果....................................58
5.1.5 塗層表面粗度量測結果...............................61
5.1.6 ASTM D4541附著力測試結果...........................62
5.2鎳-鈦電弧熔射層耐蝕性能檢測結果.......................64
5.2.1 AC交流阻抗測試結果.................................64
5.2.2 動電位極化曲線量測.................................65
5.2.3 鹽霧試驗結果.......................................69
5.3 鎳-鈦電弧熔射層磨潤性能檢測結果......................71
5.3.1 鋼球-平板往復磨耗實驗結果..........................71
5.3.2 鋼球-圓盤磨耗實驗結果..............................75
六、 結論................................................84
6.1 複合塗層耐蝕與耐磨性能結論...........................84
6.2 未來研究方向建議.....................................86
參考文獻................................................140
參考文獻 [1] E. R. Sampson, “Thermal Spray Coatings for Corrosion Protection: An Overview”, MP, Dec. 1997, pp.27-30.
[2] B. Fitzsimons, “Thermal Spray Metal Coatings for Corrosion Protection”, Corrosion Management, Dec. 1995/Jan. 1996, pp.12-17.
[3] L. E. Weiss, F. B. Prinz and E. L. Gursoz, “Rapid Tool Manufacturing”, U.S. Patent 5,189,781, 1993.
[4] L. E. Weiss, D.G. Thuel, L. Schultz and F. B. Prinz, “Arc Sprayed Steel-Faced Tooling”, Journal of Thermal Spray Technology, Vol.3, No.3, 1994, pp.275-281.
[5] L. E. Weiss and F. B. Prinz, “A Thermal Spray Approach to Rapid Prototyping- An Extended Abstract”, Journal of Thermal Spray Technology, Vol.3, No.3, 1994, pp.297-298.
[6] V. V. Sobolev and J. M. Guilemany, “Oxidation of Coatings in Thermal Spraying”, Materials Letters, Vol.37, Iss.4-5, 1998, pp.231-235.
[7] V. V. Sobolev and J. M. Guilemany, “Influence of Wetting and Surface Effects on Splat Formation During Thermal Spraying”, Materials Letters, Vol.37, Iss.3, 1998, pp.132-137.
[8] V. V. Sobolev, “Formation of Splat Morphology During Thermal Spraying”, Materials Letters, Vol.36, Iss.1-4, 1998, pp.123-127.
[9] V. V. Sobolev and J. M. Guilemany, “Effect of Substrate Deformation on Droplet Flattening in Thermal Spraying”, Materials Letters, Vol.35, Iss.5-6, 1998, pp.324-328.
[10] V. V. Sobolev and J. M. Guilemany, “Droplet-Substrate Impact Interaction in Thermal Spraying”, Materials Letters, Vol.28, Iss.4-6, 1996, pp.331-335.
[11] V. V. Sobolev, J. M. Guilemany and A. J. Martin, “Analysis of Splat Formation During Flattening of Thermally Sprayed Droplets”, Materials Letters, Vol. 29, Iss.1-3, 1996, pp.185-190.
[12] V. V. Sobolev, J. M. Guilemany, J. Nutting and J. R. Miquel, “Development of Substrate-Coating Adhesion in Thermal Spraying”, International Materials Reviews, Vol.42, Iss.3, 1997, pp.117-136.
[13] V. V. Sobolev and J. M. Guilemany, “Influence of Solidification on the Flattening of Droplets During Thermal Spraying”, Materials Letters, Vol.28, Iss.1-3, 1996, pp.71-75.
[14] V. V. Sobolev and J. M. Guilemany, “Formation of Splats During Thermal Spraying of Composite Powder Particles”, Materials Letters, Vol.42, Iss.1-2, 2000, pp.46-51.
[15] H. D. Stiffens and K. Nassenstein, “Recent Developments in Single-Wire Vacuum Arc Spraying”, Journal of Thermal Spray Technology, Vol.3, No.4, 1994, pp.412-417.
[16] S. D. Cramer, Jr, B.S Covino, G. R. Holcomb, S. J. Bullard, W. K. Collins, R. D. Govier, R D. Wilson and H. M. Laylor, “Thermal Sprayed Titanium Anode for Cathodic Protection of Reinforced Concrete Bridges”, Journal of Thermal Spray Technology, Vol.8, No.1, 1999, pp.133-145.
[17] R. A. Sulit, T. Call and D. Hubert, “Arc-Sprayed Aluminum Composite Nonskid Coatings for AM-2 Landing Mats”, National Thermal Spray Conference, Anaheim, June 1993, pp.445-450.
[18] H. Hiraga, T. Inoue, H. Shimura and A. Matsunawa, “Cavitation Erosion Mechanism of NiTi Coatings Made by Laser Plasma Hybrid Spraying”, Wear, Vol.231, 1999, pp.272-278.
[19] L. M. Qian, Z. R. Zhou and Q. P. Sun, “The Role of Phase Transition in the Fretting Behavior of Ni-Ti Shape Memory Alloy”, Wear, Vol.259, 2005, pp.309-318.
[20] S. Siegmann, K. Halter and B. Wielage, “Vacuum Plasma Sprayed Coatings and Freestanding Parts of Ni-Ti Shape Memory Alloy”, ITSC 2002 International Thermal Spray Conference, Essen, 2002.
[21] D.Y. Li and Rong Liu, “The Mechanism Responsible for High Wear Resistance of Pseudo-Elastic TiNi Alloy-A Novel Tribo-Material”, Wear, Vol.225-229, 1999, pp.777-783.
[22] D.Y. Li, “A New Type of Wear Resistant Material: Pseudo-Elastic TiNi Alloy”, Wear, Vol.221, (1998), pp.116-123.
[23] H. Hiraga, T. Inoue, H. Shimura and A. Matsunawa, “Cavitation Erosion Mechanism of NiTi Coatings Made by Laser Plasma Hybrid Spraying”, Wear, Vol.231, 1999, pp.272-278.
[24] Francis C. W. Goh, Y. W. Gu, C. S. Lim, A. E. W. Jarfors, B. Y. Tay and M. S. Yong, “Effects of Using Mechanically Alloyed Reagent on Self-Propagating High-Temperature Synthesis of NiTi“, The 3rd International Conference on Materials Processing for Properties and Performance (MP3), Singapore, 24 - 26 November 2004, pp.905- 912.
[25] B. A. Shaw and P. J. Moran, “Characterization of the Corrosion Behavior of Zinc-Aluminum Thermal Spray Coatings”, MP, Nov. 1985.
[26] B. A. Shaw and A. G. S. Morton, “Marine Thermal Spray Coatings Marine Performance and Mechanisms”, Corrosion Branch, David Taylor Research Center, Bethesda Maryland, USA.
[27] L. E. Weiss, F. B. Prinz and E. L. Gursoz, “Rapid Tool Manufacturing”, U.S. Patent 5,189,781, 1993.
[28] N. Sakoda, M. Hida, Y. Takemoto, A. Sakakibara and T. Tajiri, “Microstructure of Alloyed Layer and Nitriding Process in Foreign Metals under Arc Sprayed Ti Composite Coating”, Journal of Japan Institute of Metals, Vol. 66, No. 12, 2002, pp.1304-1310.
[29] T. Sato, A. Nezu and T. Watanabe, “ Preparation of Ti-Al Intermetallic Compound by Wire Arc Spraying”, Transactions of Materials Research Society of Japan, 25 (1), 2000, pp.302-305.
[30] P. Li and H. G. Wang, “Study of Slide Wear Resistance Properties of Coatings Ti-Al Twin Wires Ultrasonic Arc Sprayed”, Cailiao Gongcheng/Journal of Materials Engineering, No.11, November 2004, pp.11-14+17.
[31] Z. Zurecki, D. Garg and D. Bowe, “Electric Arc Deposition of Carbon Steel Coatings with Improved Mechanical Properties”, Surface Engineering, Vol.12, No.3, 1996, pp.217-219.
[32] T. S. Skoblo, V. M. Vlasovets and V. V. Moroz, “The Structure and Distribution of the Components in the Working Layer upon Parts Arc Spraying Metallizing Reconditioning”, Metallovedeniei Termicheskaya Obrabotka Metallov, No. 12, 2001, pp.26-29.
[33] S. Dallaire and H. Levert, “Synthesis and Deposition of TiB2-Containing Materials by Arc Spraying”, Surface & Coatings Technology, Vol.50, No.3, 1992, pp.241-248.
[34] E. Lugscheider, C. Herbst-Dederichs and A. Reimann, “Thermally Sprayed Quasicrystal Composite Coatings for Bearings and other Friction Threaded Applications”, Proceedings of the International Thermal Spray Conference, 2000, pp.843-849.
[35] Y. L. Qiao, B. S. Xu, S. N. Ma, X. B. Liang and J. C. Chi, “Tribological Properties and Mechanism of Fe-Cr-Ni Coating”, Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, Vol.38, No.5, May 2002, pp.18-21.
[36] M. K. Hedges, A. P. Newbery and P. S. Grant, “Characterisation of Electric Arc Spray formed Ni Superalloy IN718”, Materials Science and Engineering, A326 2002, pp.79-91.
[37] J. J. Kaiser and R. A. Miller, “Inert Gas Improves Arc-Sprayed Coatings”, Advanced Materials and Process. Vol. 136, No. 6, 1989, pp. 37-40.
[38] F. H. Froes, C. Suryanarayana, K. Russell and C. G. Li, “Synthesis of Intermetallics by Mechanical Alloying”, Materials Science and Engineering A, Vol.192/193, 1995, pp.612-623.
[39] J. Yuan, Y. Zhu, X. Zheng, H. Ji and T. Yang, "Fabrication and Evaluation of Atmospheric Plasma Spraying WC–Co–Cu–MoS2 Composite Coatings", Journal of Alloys and Compounds 509 (2011) pp.2576-2581
[40] T. Akito and F. Yoshio, “Mechanical Alloying of the Ti-Al System in Atmosphere of Hydrogen and Argon”, NanoStructure Materials, Vol.11, No.8, 1999, pp.1205-1217.
[41] J. H. Ahn, B. C. Hwang and S. H. Lee, “Improvement of Wear Resistance of Plasma-Sprayed Molybdenum Blend Coatings”, Journal of Thermal Spray Technology, Vol.14, No.2, June 2005, pp.251-257.
[42] J. M. Guilemany, J. M. Miguel, S. Vizcaíino, C. Lorenzana, J. Delgado and J. Sànchez, “Role of Heat Treatments in the Improvement of the Sliding Wear Properties of Cr3C2-NiCr Coatings”, Surface & Coatings Technology, Vol.157, 2002, pp.207-213.
[43] N. Sakoda, M. Hida, Y. Takemoto, A. Sakakibara and T. Tajiri, “Influence of Atomization Gas on Coating Properties under Ti Arc Spraying”, Materials Science and Engineering, A342 2003, pp.264-269.
[44] B. B. Straumal, W. Gust, N. F. Vershinin, M. Friesel and M. Willander, “Vacuum Arc Deposition of Ni-Ti Gradient Coatings”, Surface and Coatings Technology, Vol.100-101, 1998, pp.316-319.
[45] Y. Zheng, H. Li and T. Zhou, "Microstructure and Mechanism of Al2O3–ZrO2 Eutectic Coating Prepared by Combustion-assisted Thermal Explosion Spraying", Applied Surface Science 258 (2011) pp.1531-1534.
[46] Y. F. Qiao, T. E. Fischer and A. Dent, “The Effects of Fuel Chemistry and Feedstock Powder Structure on the Mechanical and Tribological Properties of HVOF Thermal-Sprayed WC-Co Coatings with Very Fine Structures”, Surface and Coatings Technology, Vol.172, No.1, 2003, pp.24-41.
[47] B. Wielage, J. Wilden, T. Schnick, A.Wank, J.Beczkowiak, R. Schülein, H. Zoz and H. Ren, “ Mechanically alloyed SiC composite powders for HVOF Applications”, Proceedings of the International Thermal Spray Conference 2002, 4.-6.März, Essen, Deutschland (2002), DVS Verlag, pp.1047-1051.
[48] D. A. Stewart, P. H. Shipway and D. G. McCartney, “Influence of Heat Treatment on the Abrasive Wear Behaviour of HVOF Sprayed WC-Co Coatings”, Surface & Coatings Technology, Vol.105, No.1-2, 1998, pp.13-24.
[49] P. H. Shipway, D. G. McCartney and T. Sudaprasert, “Sliding Wear Behaviour of Conventional and Nanostructured HVOF Sprayed WC-Co Coatings”, Wear, Vol.259, No.7-12, August 2005, 15th International Conference on Wear of Materials, pp.820-827.
[50] H. Chen, C. Xu, Q. Zhou, I. M. Hutchings, P. H. Shipway and J. Liu, “Micro-scale Abrasive Wear Behaviour of HVOF Sprayed and Laser-Remelted Conventional and Nanostructured WC-Co Coatings”, Wear, Vol.258, No. 1-4 Spec. Iss., January 2005, pp.333-338.
[51] X. J. Liu, B. C. Xu, S. I. Ma and Z. G. Chen, “Study of the Tribological Behavior of an Ni Electron Brush-Plating Layer on a Base of an Arc Sprayed Coating”, Wear, Vol.211, 1997, pp.151-155.
[52] P. Jokinen, K. Korpiola and A. Mahiout, “Duplex Coating of Electroless Nickel and HVOF Sprayed WC/Co”, Journal of Thermal Spray Technology, Vol. 9, No. 2, 2000, pp.241-244.
[53] X. J. Liu, B. S. Xu, S. N. Ma and Z. G. Chen, “Study of the Tribological Behavior of an Ni Electron Brush Plating Layer on a Base of an Arc Sprayed Coating”, Wear, Vol.211, 1997, pp.151-155.
[54] B. S. Xu, Z. X. Zhu, S. N. Ma, W. Zhang and W. M. Liu “Sliding Wear Behavior of Fe-Al and Fe-Al/WC Coatings Prepared by High Velocity Arc Spraying”, Wear, Vol.257, 2004, pp.1089-1095.
[55] A. Edrisy, T. Perry, Y. T. Cheng and A.T. Alpas, “Wear of Thermal Spray Deposited Low Carbon Steel Coatings on Aluminum Alloys”, Wear, Vol.251, 2001, pp.1023-1033.
[56] A. Edrisy, T. Perry, Y. T. Cheng and A. T. Alpas, “The Effect of Humidity on the Sliding Wear of Plasma Transfer Wire Arc Thermal Sprayed Low Carbon Steel Coatings”, Surface and Coatings Technology, Vol.146-147, 2001, pp.571-577.
[57] Z. R. Shui and B. Q. Wang, “Erosion of Protective Coating”, Surface and Coatings Technology, Vol.43, No.33, 1990, pp.875-887.
[58] J. A. Hearley, J. A. Little and A. J. Sturgeon, ”The Erosion Behaviour of NiAl Intermetallic Coatings Produced by High Velocity Oxy-Fuel Thermal Spraying”, Wear, Vol.233-235, 1999, pp.328-333.
[59] Q. Q. Yang, T. Senda and A. Ohmori, “Effect of Carbide Grain Size on Microstructure and Sliding Wear Behavior of HVOF-Sprayed WC-12% Co Coatings”, Wear, Vol.254, No.1-2, January 2003, pp.23-34.
[60] T. Sudaprasert, P. H. Shipway and D. G. McCartney, “Sliding Wear Behaviour of HVOF Sprayed WC-Co Coatings Deposited with Both Gas-Fuelled and Liquid-Fuelled Systems”, Wear, Vol.255, No.7-12, August/September 2003, pp.943-949.
[61] T. Sahraoui, N. E. Fenineche, G. Montavon and C. Coddet, “Structure and WearBehaviour of HVOF Sprayed Cr3C2-NiCr and WC-Co Coatings”, Materials and Design, Vol.24, No.5, August 2003, pp.309-313.
[62] L. Jacobs, M. M. Hyland and M. deBonte, “Study of the Influence of Microstructural Properties on the Sliding-Wear Behavior of HVOF and HVAF Sprayed WC-Cermet Coatings”, Journal of Thermal Spray Technology, Vol.8, No.1, 1999, pp.125-132.
[63] L. Valentinelli, T. Valente, F. Casadei and L. Fedrizzi, “Mechanical and Tribocorrosion Properties of HVOF Sprayed WC-Co Coatings”, Corrosion Engineering Science and Technology, Vol.39, No.4, December 2004, pp.301-307.
[64] P. H. Shipway and L. Howell, “Microscale Abrasion - Corrosion Behaviour of WC-Co Hardmetals and HVOF Sprayed Coatings”, Wear, Vol. 258, No. 1-4, Spec. Iss., January 2005, pp.303-312.
[65] C. Bartuli, T. Valente, F. Cipri, E. Bemporad and M. Tului, “Parametric Study of an HVOF Process for the Deposition of Nanostructured WC-Co Coatings”, Journal of Thermal Spray Technology, Vol.14, No.2, June 2005, pp.187-195.
[66] H. Liao, B. Normand and C. Coddet, “Influence of Coating Microstructure on the Abrasive Wear Resistance of WC/Co Cermet Coatings”, Surface and Coatings Technology, Vol.124, No.2, Feb. 2000, pp.235-242.
[67] A. H. Dent, S. DePalo and S. Sampath, “Examination of the Wear Properties of HVOF Sprayed Nanostructured and Conventional WC-Co Cermets with Different Binder Phase Contents”, Journal of Thermal Spray Technology, Vol. 11, No. 4, Dec. 2002,pp.551-558.
[68] R. Nieminen, P. Vuoristo, K. Niemi, T. Mantyla and G. Barbezat, “Rolling Contact Fatigue Failure Mechanisms in Plasma and HVOF Sprayed WC-Co Coatings”, Wear, Vol.212, No.1, 1997, pp.66-77.
[69] J. M. Guilemany, J. M. Miguel, S. Vizcaino and F. Climent, “Role of Three-Body Abrasion Wear in the Sliding Wear Behaviour of WC-Co Coatings Obtained by Thermal Spraying”, Surface and Coatings Technology, Vol.140, No.2, 2001, pp.141-146.
[70] Y. Qiao, Y. Liu and T. E. Fischer, “Sliding and Abrasive Wear Resistance of Thermal-Sprayed WC-Co Coatings”, Journal of Thermal Spray Technology, Vol.10, No.1, 2001, pp.118-125.
[71] C. J. Li, Y. Y. Wang, G. J. Yang, A. Ohmori and K. A. Khor, “Effect of Solid Carbide Particle Size on Deposition Behaviour, Microstructure and Wear Performance of HVOF Cermet Coatings”, Materials Science and Technology, Vol.20, No.9, 2004, pp.1087-1096.
[72] J. K. N. Murthy, D. S. Rao and B. Venkataraman, “Effect of Grinding on the Erosion Behaviour of a WC-Co-Cr Coating Deposited by HVOF and Detonation Gun Spray Processes”, Wear, Vol.249, No.7, July 2001, pp.592-600.
[73] P. L. Ko and M. F. Robertson, “Wear Characteristics of Electrolytic Hard Chrome and Thermal Sprayed WC-10Co-4Cr Coatings Sliding against Al-Ni-Bronze in Air at 21°C and at -40°C ”, Wear, Vol.252, No.11-12, June 2002, pp.880-893.
[74] Y. Wang, W. Chen and L. Wang “Micro-indentation and Erosion Properties of Thermal Sprayed NiAl Intermetallic-Based Alloy Coatings”, Wear, Vol.254, 2003, pp.350-355.
[75] B. S. Mann, Vivek Arya, A. K. Maiti, M. U. B. Rao and Pankaj Joshi,” Corrosion and Erosion Performance of HVOF/TiAlN PVD Coatings and Candidate Materials for High Pressure Gate Valve Application”, Wear, Vol.260, 2006, pp.75-82.
[76] Y. W. Gu, C. W. Goh, L. S Goi, C. S. Lim, A. E. W. Jarfors, B.Y Tay and M. S. Yong, ” Solid State Synthesis of Nanocrystalline and/or Amorphous 50Ni-50Ti Alloy”, Materials Science and Engineering A, Vol.392, 2005, pp.222-228.
[77] J. B. Zhou and K. P. Rao, ”Structure and Morphology Evolution During Mechanical Alloying of Ti-Al-Si Powder Systems”, Journal of Alloys and Compounds, Vol.384, 2004, pp.125-130.
[78] R. Goswami, S. Sampath, H. Herman and J.B. Parise, "Diamond Synthesis by High Velocity Thermal Spray: The Laboratory Analogue of Meteorite Impact", Journal of Materials Research, Vol.14, Iss.9, 2000, pp.25-28.
[79] R. Goswami, S. Sampath, H. Herman, and J.B. Parise, ”Shock synthesis of nanocrystalline Si by thermal spraying”, Journal of Materials Research, Vol.14, Iss.9, 1999, pp.3489-3492.
[80] R. Goswami, H. Herman, S. Sampath, J.B. Parise, Y. Zhu, and D. Welch, “Shock-Induced Transformations in Hexagonal Boron Nitride by High-Velocity Thermal Spray”, Journal of the American Ceramic Society, Vol.85, Iss.10, 2002, pp.2437-2443.
[81] E. K. Beauchamp and M. J. Carr, “ Kinetics of Phase Change in Explosively Shock-Treated Alumina”, Journal of the American Ceramic Society 73 (1990) pp.49-53.
[82] T. Valente, F. P. Galliano, Corrosion Resistance Properties of Reactive Plasma Sprayed Titanium Composite Coatings, Surface & Coating Technology 127 (2000) pp.86-92
[83] K. Ishikawa, T. Suzuki, Y. Kitamura and S. Tobe, “Corrosion Resistance of Thermal Sprayed Titanium Coatings in Chloride Solution”,Journal of Thermal Spray Technology 8 (1999) pp.273-278
指導教授 鄭銘章(MING-CHANG JENG) 審核日期 2012-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明