參考文獻 |
[1] Mimeault, M., R. Hauke, and S.K. Batra, Stem cells: A revolution in therapeutics - Recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clinical Pharmacology & Therapeutics, 2007. 82(3): p. 252-264.
[2] Bustillo, J.M., R.T. Howe, and R.S. Muller, Surface micromachining for microelectromechanical systems. Proceedings of the Ieee, 1998. 86(8): p. 1552-1574.
[3] West, J., et al., Micro total analysis systems: Latest achievements. Analytical Chemistry, 2008. 80(12): p. 4403-4419.
[4] Weibel, D.B., P. Garstecki, and G.M. Whitesides, Combining microscience and neurobiology. Current Opinion in Neurobiology, 2005. 15(5): p. 560-567.
[5] Randall, G.C. and P.S. Doyle, Permeation-driven flow in poly(dimethylsiloxane) microfluidic devices. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(31): p. 10813-10818.
[6] Yang, S.Y., J.L. Lin, and G.B. Lee, A vortex-type micromixer utilizing pneumatically driven membranes. Journal of Micromechanics and Microengineering, 2009. 19(3).
[7] Huang, C.W. and G.B. Lee, A microfluidic system for automatic cell culture. Journal of Micromechanics and Microengineering, 2007. 17(7): p. 1266-1274.
[8] Cimetta, E., et al., Microfluidic device generating stable concentration gradients for long term cell culture: application to Wnt3a regulation of beta-catenin signaling. Lab on a Chip, 2010. 10(23): p. 3277-3283.
[9] Yen, B.L., et al., Placenta-derived multipotent cells differentiate into neuronal and glial cells in vitro. Tissue Engineering Part A, 2008. 14(1): p. 9-17.
[10] Phillips, B.W. and J.M. Crook, Pluripotent Human Stem Cells A Novel Tool in Drug Discovery. Biodrugs, 2010. 24(2): p. 99-108.
[11] Brignier, A.C. and A.M. Gewirtz, Embryonic and adult stem cell therapy. Journal of Allergy and Clinical Immunology, 2010. 125(2): p. S336-S344.
[12] Preston, S.L., et al., The new stem cell biology: something for everyone. Journal of Clinical Pathology-Molecular Pathology, 2003. 56(2): p. 86-96.
[13] Jiang, Y.H., et al., Pluripotency of mesenchymal stem cells derived from adult marrow (vol 418, pg 41, 2002). Nature, 2007. 447(7146): p. 879-880.
[14] Lee, O.K., et al., Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood, 2004. 103(5): p. 1669-1675.
[15] Yen, B.L., et al., Isolation of multipotent cells from human term placenta. Stem Cells, 2005. 23(1): p. 3-9.
[16] De Coppi, P., et al., Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology, 2007. 25(1): p. 100-106.
[17] Du, H. and H.S. Taylor, Stem Cells and Female Reproduction. Reproductive Sciences, 2009. 16(2): p. 126-139.
[18] Human Term Placenta a New Abundant Source of Hematopoietic Cells-A Potent Alternative for Cord Blood and Bone Marrow. Experimental Biology and Medicine, 2009. 234(7): p. Vi-Vi.
[19] Dawe, G.S., X.W. Tan, and Z.C. Xiao, Cell migration from baby to mother. Cell Adh Migr, 2007. 1(1): p. 19-27.
[20] Li, G., et al., Comparative proteomic analysis of mesenchymal stem cells derived from human bone marrow, umbilical cord, and placenta: Implication in the migration. Proteomics, 2009. 9(1): p. 20-30.
[21] Wu, H.W., et al., The culture and differentiation of amniotic stem cells using a microfluidic system. Biomedical Microdevices, 2009. 11(4): p. 869-881.
[22] Kim, L., et al., A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab on a Chip, 2007. 7(6): p. 681-694.
[23] Kempner, M.E. and R.A. Felder, A Review of Cell Culture Automation. 2002. 7(2): p. 56-62.
[24] Hung, P.J., et al., Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnology and Bioengineering, 2005. 89(1): p. 1-8.
[25] Wu, H.W., et al., A microfluidic device for separation of amniotic fluid mesenchymal stem cells utilizing louver-array structures. Biomedical Microdevices, 2009. 11(6): p. 1297-1307.
[26] Hung, P.J., et al., A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array. Lab on a Chip, 2005. 5(1): p. 44-48.
[27] Zhang, M.Y., et al., Microfluidic environment for high density hepatocyte culture. Biomedical Microdevices, 2008. 10(1): p. 117-121.
[28] Chung, B.G., et al., Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab on a Chip, 2005. 5(4): p. 401-406.
[29] Okano, H., Neural stem cells. Japanese Journal of Pharmacology, 2002. 88: p. 25P-25P.
[30] Deng, W.W., et al., In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochemical and Biophysical Research Communications, 2001. 282(1): p. 148-152.
[31] Wu, C.C., et al., Synergism of biochemical and mechanical stimuli in the differentiation of human placenta-derived multipotent cells into endothelial cells. Journal of Biomechanics, 2008. 41(4): p. 813-821.
[32] Miyanishi, K., et al., Effects of hydrostatic pressure and transforming growth factor-beta 3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Engineering, 2006. 12(6): p. 1419-1428.
[33] Bieberich, E. and A. Guiseppi-Elie, Neuronal differentiation and synapse formation of PC12 and embryonic stem cells on interdigitated microelectrode arrays: Contact structures for neuron-to-electrode signal transmission (NEST). Biosensors & Bioelectronics, 2004. 19(8): p. 923-931.
[34] Ebisawa, K., et al., Ultrasound enhances transforming growth factor beta-mediated chondrocyte differentiation of human mesenchymal stem cells. Tissue Engineering, 2004. 10(5-6): p. 921-929.
[35] Sun, S., et al., Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells. Faseb Journal, 2007. 21(7): p. 1472-1480.
[36] Folch, A. and M. Toner, Microengineering of cellular interactions. Annual Review of Biomedical Engineering, 2000. 2: p. 227-+.
[37] Csete, M., Q&A: what can microfluidics do for stem-cell research? J Biol. 9(1): p. 1.
[38] Park, S.H., et al., An electromagnetic compressive force by cell exciter stimulates chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. Tissue Engineering, 2006. 12(11): p. 3107-3117.
[39] Figallo, E., et al., Micro-bioreactor array for controlling cellular microenvironments. Lab on a Chip, 2007. 7(6): p. 710-719.
[40] Piruska, A., et al., The autofluorescence of plastic materials and chips measured under laser irradiation. Lab on a Chip, 2005. 5(12): p. 1348-1354.
[41] Huh, D., et al., Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Analytical Chemistry, 2007. 79(4): p. 1369-1376.
[42] Lucchetta, E.M., et al., Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature, 2005. 434(7037): p. 1134-1138.
[43] Lanniel, M., et al., Substrate induced differentiation of human mesenchymal stem cells on hydrogels with modified surface chemistry and controlled modulus. Soft Matter, 2011. 7(14): p. 6501-6514.
[44] Lorenz, H., et al., SU-8: a low-cost negative resist for MEMS. Journal of Micromechanics and Microengineering, 1997. 7(3): p. 121-124.
[45] Chiou, C.H. and G.B. Lee, Minimal dead-volume connectors for microfluidics using PDMS casting techniques. Journal of Micromechanics and Microengineering, 2004. 14(11): p. 1484-1490.
[46] Slentz, B.E., N.A. Penner, and F.E. Regnier, Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization. Journal of Chromatography A, 2002. 948(1-2): p. 225-233.
[47] 楊奇勳, "利用SU-8 光阻二次塗佈製作2.5D 微結構之製程研究," in 機械所, vol. 碩士. 台灣: 交通大學, 中華民國九十年七月
[48] MicroChem-“SU-8 3000 Permanent Epoxy Negative Photoresist”
|