參考文獻 |
[1] I. Boldea and S. A. Nasar, Linear Electric Motors: Theory, Design, and Practical Applications. Englewood Cliffs, NJ: Prentice-Hall, 1987, pp. 91–132.
[2] J. F. Gieras and Z. J. Piech, Linear Synchronous Motors: Transportation and Automation Systems. Boca Raton, FL: CRC, 2000, pp. 123–148.
[3] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electronic Machine and Drive Systems, 2nd ed. New York: IEEE Press, 2002, pp. 191–242.
[4] D. W. Novotny and T. A. Lipo, Vector Control and Dynamics of AC Drivers. Oxford, U.K.: Oxford Univ. Press, 1996, pp. 290–298.
[5] Kollmergen Linear Motors Aim to Cut Cost of Semiconductors and Electronics Manufacture, Kollmorgen, Radford, VA, U.S.A., 1997.
[6] J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, 1991
[7] H. A. Khalil, Nonlinear Systems, 3rd edition, Prentice Hall, 2002.
[8] C. L. Phillips and H. T. Nagle, Digital Control System Analysis and Design. 3rd ed., Prentice Hall, 1995.
[9] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang, and C. M. Huang, Robust current control and commutation tuning for an IPMSM drive,” in Proc. 18th IEEE APEC, Feb. 2003, vol. 2, pp. 1045–1051.
[10] K. Ohishi, K. Ohnishi and K. Miyachi, “Adaptive DC servo drive control taking force disturbance suppression into account,” IEEE Trans. Ind. Appl., Vol. 24, No. 1, Part 1, Jan.-Feb. 1988, pp.171–176.
[11] W. T. Su and C. M. Liaw, “Robust balanced control of LPMSM servo drive with mass identification and large command change,” Proc. Inst. Elect. Eng.—Elect. Power Appl., vol. 153, no. 3, pp. 439–450, May 2006.
[12] W. T. Su and C. M. Liaw, “Adaptive positioning control for a LPMSM drive based on adapted inverse model and robust disturbance observer,” IEEE Trans. Power Electron., Vol. 21, No. 2, Mar. 2006, pp.505–517.
[13] R. H. Horng, H. L. Chou and A. C. Lee, “Rejection of Limit Cycles Induced From Disturbance Observers in Motion Control,” IEEE Trans. Ind. Electron., Vol. 53, No. 6, Dec. 2006, pp.1770-1780.
[14] K. B. Lee and F. Blaabjerg, “Robust and Stable Disturbance Observer of Servo System for Low-Speed Operation”, IEEE Trans. Ind. Appl., Vol. 43, No. 3, May./Jun. 2007, pp. 627-635.
[15] S. H. Choi, J. S. Ko, I. D. Kim, J. S. Park, and S. C. Hong, “Precise position control using a PMSM with a disturbance observer containing a system parameter compensator,” Proc. Inst. Elect. Eng.—Elect. Power Appl., vol. 152, no. 6, pp. 1573–1577, Nov. 2005.
[16] Y. A. R. I. Mohamed, “Design and Implementation of a Robust Current-Control Scheme for a PMSM Vector Drive With a Simple Adaptive Disturbance Observer,” IEEE Trans. Ind. Electron., Vol. 54, No. 4, Aug. 2007, pp.1981-1988.
[17] T. M. O’Sullivan, C. M. Bingham and N. Schofield, “Observer-Based Tuning of Two-Inertia Servo-Drive Systems With Integrated SAW Torque Transducers,” IEEE Trans. Ind. Electron., Vol. 54, No. 2, Apr. 2007, pp.1080-1091.
[18] B. K. Kim, W. K. Chung and K. Ohba, “Design and Performance Tuning of Sliding-Mode Controller for High-Speed and High-Accuracy Positioning Systems in Disturbance Observer Framework,” IEEE Trans. Ind. Electron., Vol. 56, No. 10, Oct. 2009, pp.3798-3809.
[19] Z. Jamaludin, H. V. Brussel and J. Swevers, “Friction Compensation of an XY Feed Table Using Friction-Model-Based Feedforward and an Inverse-Model-Based Disturbance Observer,” IEEE Trans. Ind. Electron., Vol. 56, No. 10, Oct. 2009, pp.3848-3853.
[20] K. Yoshida, and H. Matsumoto, Propulsion and guidance simulation of a high-temperature superconducting Bulk ropeless linear elevator, IEEE Trans. on Magnetics, vol. 40, no. 2, pp. 615-618, 2004.
[21] S.H. Lim, and R. Krishnan, Ropeless elevator with linear switched reluctance motor drive actuation systems, IEEE Trans. Ind. Electron., vol.54, no. 4, pp. 2209-2217, 2007.
[22] N.S. Lobo, S.H. Lim, and R. Krishnan, Comparison of linear switched reluctance machines for vertical propulsion application: analysis, design, and experimental correlation, IEEE Trans. Ind. Appl., vol. 44, no. 4, pp. 1134-1142,. 2008.
[23] S.H. Lim, R. Krishnan, and N.S. Lobo, Design and control of a linear propulsion system for an elevator using linear switched reluctance motor drives, IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 534-542, 2008.
[24] W.F. Xie, Sliding-mode-observer-based adaptive control for servo actuator with friction, IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1517-1527, 2007.
[25] Y.S. Kung, Design and implementation of a high-performance PMLSM drives using DSP chip, IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1341-1351, 2008.
[26] F.J. Lin, L.T. Teng, C.Y. Chen, and Y.C. Hung, FPGA-based adaptive backstepping control system using RBFN for linear induction motor drive, IET Electr. Power Appl., vol. 2, no. 6, pp. 325-340, 2008.
[27] F.J. Lin, L.T Teng, and Y.C. Hung, Modified Elman neural network controller with improved particle swarm optimization for linear synchronous motor drive, IET Electr. Power Appl., vol. 2, no. 3, pp. 201-214, 2008.
[28] F.J. Lin, C.Y. Chen, L.T. Teng, and H. Chu, Recurrent Functional-Link-Based Fuzzy Neural Network Controller With Improved Particle Swarm Optimization for a Linear Synchronous Motor Drive, IEEE Trans. on Magnetics, vol. 45, no. 8, pp. 3151-3165, 2009.
[29] F. Cupertino, D. Naso, E. Mininno, and B. Turchiano, Sliding-mode control with double boundary layer for robust compensation of payload mass and friction in linear motors, IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1688-1696, 2009.
[30] Y.S. Huang, and C.C. Sung, Function-based controller for linear motor control systems, IEEE Trans. Ind. Electron., vol. 57, no. 3, pp. 1096-1105, 2010.
[31] F.J. Lin, L.T. Teng, C.Y. Chen, and C.K. Chang, Robust RBFN control for linearinduction motor drive using FPGA, IEEE Trans. Power Electron., vol. 23, no. 4, pp.2170–2180, 2008.
[32] F.J. Lin, J.C. Hwang, P.H. Chou, and Y.C. Hung, FPGA-based intelligent-complementary sliding-mode control for PMLSM servo-drive system, IEEE Trans. Power Electron., vol. 25, no. 10, pp.2573–2587, 2010.
[33] A.V. Sant, K.R. Rajagopal, PM Synchronous Motor Speed Control Using Hybrid Fuzzy-PI With Novel Switching Functions, IEEE Trans. on Magnetics, vol. 45, no. 10, , pp.4672–4675, 2009.
[34] C.C. Cheah, and H.C. Liaw, Inverse Jacobian regulator with gravity compensation: stability and experiment, IEEE Trans. on Robotics, vol. 21, no. 4, pp. 741-747, 2005.
[35] A. Zavala-Río, and V. Santibáñez, Simple extensions of the PD-with-gravity-compensation control law for robot manipulators with bounded inputs, IEEE Trans. Control Syst. Technol., vol. 14, no. 5, pp. 958-965, 2006.
[36] J.D. Rubio, and L.A. Soriano, An asymptotic stable proportional derivative control with sliding mode gravity compensation and with a high gain observer for robotic arms, IJICIC, vol. 6, no. 10, pp. 4513-4525, 2010.
[37] M. Yue, W. Sun, and P. Hu, Sliding mode robust control for two-wheeled mobile robot with lower center of gravity, IJICIC, vol. 7, no. 2, pp. 637-646, 2011.
[38] M.H.Tsai, and M.C.Shih, A Study of the Pneumatic Counterweight of Machine Tools Conventional and Active Pressure Control Method, JSME International Journal, vol. 49, no. 3, pp. 890-896, 2006.
[39] D. Karnopp, “Computer simulation of stick-slip friction in mechanical dynamic systems,” J. Dynamic Systems, Measurement and Control, Transactions of the ASME, vol.107, no.1, pp.100–103, Mar. 1985.
[40] B. Friedland and Y.-J. Park, “On adaptive friction compensation,” IEEE Trans. Autom. Control, vol.37, no.10, pp.1609–1612, Oct. 1992.
[41] B. Armstrong-H´elouvry, P. Dupont, and C. Canudas de Wit, “A survey of models, analysis tools and compensation methods for the control of machines with friction,” Automatica, vol.30, no.7, pp.1083–1138, Jul. 1994.
[42] P. R. Dahl, “A solid friction model,” The Aerospace Corporation, El Segundo, CA, Technical Report TOR-158(3107-18), 1968.
[43] D. A. Haessig, Jr. and B. Friedland, “On the modeling and simulation of friction,” J. Dynamic Systems, Measurement and Control, Transactions of the ASME, vol.113, no.3, pp.354–362, Sep. 1991.
[44] C. Canudas de Wit, H. Olsson, K.J. A˙ stro¨m, and P. Lischinsky, “A newmodel for control of systems with friction,” IEEE Trans. Autom. Control, vol.40, no.3, pp.419–425, Mar. 1995.
[45] F. J. Lin, Y. C. Hung, and S. Y. Chen, “FPGA-Based Computed Force Control System Using Elman Neural Network for Linear Ultrasonic Motor,” IEEE Trans. Ind. Electron., vol. 56, no. 4, pp.1238-1253, Apr. 2009.
[46] B. K. Kim, W. K. Chung and K. Ohba, “Adaptive Robust Precision Motion Control of Systems With Unknown Input Dead_Zones A Case Study With Comparative Experiments,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp.2454-2464, Jun. 2011.
[47] T. Jahns, “Motion control with Permanent-magnet ac machines,” Proc. IEEE, vol. 82, no. 8, pp.1241–1252, Aug. 1994.
[48] P. C. Tung and S. C. Chen, “Experiment and analytical studies of the sinusoidal dither signal in a DC motor system,” Dynamics and Control, vol. 3, no. 1, pp.992-997, Jan. 1993.
[49] J. Ishikawa, Y. Yanagita, T. Hattori and M. Hashimoto, Head positioning control for low sampling rate systems based on two degree-of-freedom control, IEEE Trans. on Magnetics, vol.32, no.3, pp.1787-1792, 1996.
[50] H. Fujimoto, Y. Hori and A. Kawamura, Perfect tracking control based on multirate feedforward control with generalized sampling periods, IEEE Trans. Ind. Electron., vol48, no.5, pp.636-644, 2001.
[51] Z. Cao and G. F. Ledwich, Adaptive repetitive control to track variable periodic signals with fixed sampling rate, IIEEE/ASME Transactions on Mechatronics, vol.7, no.3, pp.378-384, 2002.
[52] M. Mizuochi, T. Tsuji and K. Ohnishi, Multirate Sampling Method for Acceleration Control System, IEEE Trans. Ind. Electron., vol.54, no.3, pp.1462-1471, 2007.
[53] T. Sato, Design of a generalized minimum variance control in sampled-data control systems, IJICIC, vol.5, no.10B, pp.3295-3302, 2009.
[54] J. S. Yim, S. K. Sul, B. H. Bae, N. R. Patel and S. Hiti, Modified Current Control Schemes for High-Performance Permanent-Magnet AC Drives With Low Sampling to Operating Frequency Ratio, IEEE Trans. Ind. Appl., vol.45, no.2, pp.763-771, 2009.
[55] Y. L. Wang and G. H. Yang, Network-based H(infinity) control of systems with time-varying sampling period, IJICIC, vol.6, no.4, pp.1833-1842, 2010.
[56] R.A. Borges1, R.C.L.F. Oliveira1, C.T. Abdallah and P.L.D. Peres, Robust H∞ networked control for systems with uncertain sampling rates, IET Control Theory Appl., vol.4, no.1, pp.50-60, 2010.
[57] I. Mizumoto, Y. Fujimoto, N. Watanabe and Z. Iwai, Fast rate adaptive output feedback control of multi-rate sampled system with an adaptive output estimator, IJICIC, vol.7, no.7B, pp.4377-4394, 2011.
[58] J.M. Olm, G.A. Ramos and R. Costa-Castello’, Stability analysis of digital repetitive control systems under time-varying sampling period, IET Control Theory Appl., vol.5, no.1, pp.29-37, 2011.
|