博碩士論文 982206063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.117.93.0
姓名 陳映羽(Ying-Yu Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以自我複製技術設計及製作低損耗型波導
(Design and fabrication of Low Propagation Loss Waveguide Using Autocloning Technique)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要以自我複製技術(Autocloning technique)來製作微型化波導,並藉由有限時域差分法(Finite-Difference Time-Domain; FDTD) 來設計微型化波導以及利用電子束直寫技術製作所需的基板圖樣。
首先,使用有限時域差分法模擬自我複製型波導的堆疊方式,比較非對稱膜堆與對稱膜堆、SiO2/Ta2O5與SiO2/TiO2結構、各種週期大小、不同頂角下TE偏振各入射角度傳遞效率的優劣,與文獻中自我複製型波導傳遞效率相比,傳遞損耗下降幅度達76.4%。此外也探討結構核心層及包覆層之等效折射率與各項參數間的相關性。
在製程過程中,利用電子槍蒸鍍系統與離子源助鍍製作自我複製式波導,共37層,其厚度約為9.2 μm。在波長1520 nm~1570 nm,其傳遞損耗為0.1838dB/mm,可應用於通訊紅外光區塊,自我複製技術有著可大量生產且多層製作之特性,微型化波導則有著積體化的前瞻性,未來可望商業化應用於積體平面光路。
摘要(英) In this research, we design and fabrication low propagation loss waveguide using by Autocloning technique. Simulation the design using by Finite-Difference Time-Domain method. Comparison of several structures, such as difference accumulation type, lattice constant, vertex angle, thickness, transverse period, and two kind of heterostructure Ta2O5/SiO2 and TiO2/SiO2, which structure can reduce the Autocloned waveguide propagation loss.
In addition, we comparing the equivalent refractive index between several structures, which has the lower propagation loss and its core and cladding actually has more difference equivalent refractive index. As the result of our design, propagation loss is reduce by over 76.4% compared with the literature.
And we have fabricated the Autocloned waveguide using electron beam gun evaporation with ion-beam-assisted depositon (IAD) successfully. The structure thin film has 37 layers, which physical thickness was 9.2μm. The Autocloned waveguide had low propagation loss about 0.1838dB/mm at 1520-1570 nm in infrared region.
Autocloning technology can be mass production, and multi-layer stack is characteristics of Autocloning technology. Integrated and miniaturization of Autocloned waveguide is forward-looking. In the future, Autocloned integrated waveguide can expected to commercial application.
關鍵字(中) ★ 光子晶體
★ 低損耗
★ 波導
★ 自我複製技術
關鍵字(英) ★ Waveguide
★ Low Propagation Loss
★ Autocloning
★ photonic crystal
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 XI
第一章 緒論 1
1-1背景 1
1-1-1 光通訊 1
1-1-2 光子晶體 2
1-2 研究動機 7
1-3 研究目的 8
1-4 論文架構 9
第二章 基礎理論 10
2-1 波導原理 10
2-2 有限時域差分法(FINITE-DIFFERENCE TIME-DOMAIN; FDTD) 11
2-3 等效介質理論 24
2-4 自我複製結構膜成膜機制 27
第三章 自我複製型波導設計 31
3-1 自我複製型波導光通區域之量化定義與討論 31
3-2 堆疊方式與傳遞損耗(PROPAGATION LOSS)常數相關性分析 38
3-2-1 堆疊方式之傳遞效率分析 38
3-2-2 堆疊方式與傳遞損耗常數分析 42
3-3 晶格常數與傳遞損耗常數相關性分析 46
3-3-1 核心層寬3μm 46
3-3-2 結構放大20%(核心層寬36μm) 47
3-3-3 結構放大10%(核心層寬33μm) 48
3-3-4 結構縮小115%(核心層寬2655μm) 49
3-4 頂角角度與傳遞損耗常數相關性分析 54
3-5 結構組成材料及結構膜厚與傳遞損耗常數相關性分析 57
3-5-1 等光學厚度 57
3-5-2 等物理厚度 63
3-6 各種結構等效折射率與傳遞損耗常數相關性分析 70
3-6-1 非對稱式與對稱式自我複製型波導等效折射率比較 70
3-6-2 結構組成Ta2O5/SiO2與TiO2/SiO2採等光學厚度設計等效折射率比較 74
3-6-3 結構組成Ta2O5/SiO2與TiO2/SiO2採等物理厚度設計等效折射率
比較 77
3-7 外圍橫向週期與傳遞損耗常數、等效折射率相關性分析 82
3-7-1外圍橫向週期與傳遞損耗常數相關性分析 82
3-7-2外圍橫向週期與等效折射率相關性分析 85
第四章 自我複製型波導製作 91
4-1 基板製作 91
4-2 結構膜製程設備 95
4-3 結構膜製作 96
第五章 自我複製型波導量測分析 97
5-1 量測儀器 97
5-2 元件製作結果與效率量測 99
5-3 元件製作結果之模擬分析 102
第六章 結論與未來工作 105
參考文獻 106
參考文獻 [1]
S. E. Miller, "Integrated optics: an introduction.", Bell System Technical Journal, vol. 48, 2059-2068 (1969)
[2]
N. Savage, "Linking with Light .", IEEE Spectrum, vol.39, 32-36 (2002)
[3]
E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics.", Physical Review Letter, vol. 58, 2059-2062 (1987)
[4]
S. John, "Strong localization of photons in certain disordered dielectric superlattices.", Physical Review Letter, vol. 58, 2486-2489 (1987)
[5]
欒丕綱、陳啟昌,光子晶體─從蝴蝶翅膀到奈米光子學,第三章,91-100,初版,五南圖書出版公司,台北市,2-31 (2006)
[6]
Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, "Low propagation loss of 0.76 dB/mm in GaAs based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length.", Optics Express, vol. 12, 1090-1096 (2004)
[7]
B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission.", Nature, vol. 420, 650-653 (2002)
[8]
A. Mehta, J. D. Brown, P. Srinivasan, R. C. Rumpf, and E. G. Johnson, “Spatially polarizing autocloned elements.”, Optical Letter, vol. 32, 1935-1937 (2007)
[9]
H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism Phenomena in Photonic Crystals:Toward Microscale Lightwave Circuits.", Journal of Lightwave Technology, vol. 17, 2032-2038 (1999)
[10]
M. Shirane, A. Gomyo, K. Miura, H. Yamada, S. Kawakami, "Optical directional couplers based on autocloned photonic crystals.", Electronics Letter, vol. 39, 53-54 (2003)
[11]
Y. Ohtera, T. Onuki, Y. Inoue, and S. Kawakami, "Multichannel Photonic Crystal Wavelength Filter Array for Near-Infrared Wavelengths.", Journal of Lightwave Technology, vol. 25, 499-503 (2007)
[12]
M. Shirane, A. Gomyo, K. Miura, Y. Ohtera, H. Yamada, and S. Kawakami, "Optical Add–Drop Multiplexers Based on Autocloned Photonic Crystals.", IEEE Journal on Selected Areas in Communications, vol. 23, 1372-1377 (2005)
[13]
S. Kawakami, T. Sato, K. Miura, Y. Ohtera, T. Kawashima, and H. Ohkubo, "3-D Photonic-Crystal Heterostructures: Fabrication and In-Line Resonator.", IEEE Photonics Technology Letter, vol. 15, 816-818 (2003)
[14]
S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, "Fabrication of 3D photonic crystals by autocloning and its applications.", Electronics and Communications in Japan Part II-Electronics, vol.82, 43-52 (1999)
[15]
D. W. Kim, S. H. Kim, S. H. Lee, K. H. Kim, J. M. Lee and E. H. Lee, " A New Method of Measuring Localized Chromatic Dispersion of Structured Nanowaveguide Devices Using White-Light Interferometry.", Journal of microelectromechanical, vol. 21, 43-48, (2012)
[16]
T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney and M. Mansuripur", Multimode Interference-Based Photonic Crystal Waveguide Power Splitter.", Journal of lightwave technology, vol. 22, 2842-2846, (2004)
[17]
S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, A. Higo, H. Toshiyoshi and H. Fujita, "Observation of micromechanically controlled tuning of photonic crystal line-defect waveguide.", Applied physics letters, vol. 88, 011104 (2006)
[18]
R. Mudachathi and P. Nair, "Low-Voltage Widely Tunable Photonic Crystal Channel Drop Filter in SOI Wafer.", Journal of lightwave technology, vol. 30, 190-197, (2012)
[19]
B. Cluzel, K. Foubert, Loic Lalouat, E. Picard, D. Peyrade, E. Hadji and F. de Fornel,"Coupling evanescently low loss Silicon-on-insulator (SOI) ridge waveguides(WGs) including high Q nanocavities: for light control.", IEEE, (2011)
[20]
K. Miura, Y. Ohtera, H. Ohkubo, T. Sato, N. Akutsu, M. Hikage, N. Ishino, T. Kawashima, S. Kawakami, "Loss Reduction of Photonic Crystal Waveguide Fabricated by the Autocloning Technology.", Electronics and Communications in Japan Part II-Electronics, vol.88, 10-20 (2005)
[21]
B. Dayal, N. Kitabayashi, T. Miyamoto, and F. Koyama, T. Kawashima and S. Kawakami, "Polarization control of 1.15μm vertical-cavity surface-emitting lasers using autocloned photonic crystal polarizer.", Applied Physics Letter, vol. 91, 041110-041110-3 (2007)
[22]
T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura and S. Kawakami, "Photonic crystals for the visible range fabricated by autocloning technique and their application.", Optical and Quantum Electronics, vol.34, 63-70 (2002)
[23]
Y. Ohtera, H. Ohkubo, K. Miura, T. Sato, T. Kawashima, S. Kawakami, "Waveguide and guided-wave devices consisting of heterostructured photonic crystals.", Optical engineering, vol. 43, 1022-1029, (2004)
[24]
K. Okamoto, "Fundamental of optical waveguides.", Chapter 1, Second Edition, Academic Press, USA, 1-2 (2006)
[25]
J. C. M. Garnett, "Philosophical Transactions of the Royal Society A.", London 203, 385-420 (1904)
[26]
D.A.G. Bruggeman, "Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. 1. Dielektrizitӓtskon- stanten und Leitfӓhigkeiten der Mischkӧrper aus isotropen Substanzen.", Annalen der Physik, 5th Series 24, 636-664 (1935)
[27]
D. E. Aspnes, "Local-field effects and effective-middle theory: A microscopic perspective.", American Journal of Physics, vol.50, 704-709 (1982)
[28]
S. Kawakami, T. Kawashima, and T. Sato, "Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering.", Applied Physics Letter, vol.74, 463-465 (1999)
[29]
S. Tazawa, S. Matsuo, and K. Saito, "A general characterization and simulation method for deposition and etching technology.", IEEE transactions on semiconductor manufacturing, vol. 5, 27-33 (1992).
指導教授 李正中、陳昇暉
(Cheng-Chung Lee、Sheng-Hui Chen)
審核日期 2012-4-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明