參考文獻 |
[1] J. H. Holland, “Adaptation in Natural and Artificial Systems,” University of Michigan Press, Ann Arbor, 1975.
[2] D. E. Goldberg, “Genetic Algorithms in Search, Optimization, and Machine Learning,” Addison-Wesley Publishing Company, Reading, MA, 1989.
[3] L. J. Fogel, “Evolutionary Programming in Perspective: the Top-down View,” in Computational Intelligence: Imitating Life, Piscataway, NJ, 1994.
[4] I. Rechenberg, “Cybernetic solution path of an experimental problem,” Royal Aircraft Establishment, Library translation 1122, Farnborough, Hants, U.K. 1965.
[5] I. Rechenberg, “Evolutiosstrategie: optimierung technischer system nach prinzipien der biologischen evolution,” Stuttgart, Germany: Frommann-Holzboog Verlag, , 1973.
[6] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating agents,” IEEE Trans. Systems, Man, and Cybernetics, part B, vol. 26, no. 1, pp. 29-41, 1996.
[7] M. Dorigo and T. Stutzle, “Ant Colony Optimization, Cambridge,” MIT, 2004.
[8] M. C. Su and Y. X. Zhao, “A variant of the SOM algorithm and its interpretation in the viewpoint of social influence and learning,” Neural Computing & Applications, vol. 18, no. 8, pp.1043-1055, 2009.
[9] J. H. Chen, M. C. Su, Y. X. Zhao, Y. J. Hsieh, and W.H. Chen, “Application of SOMO based clustering in building renovation,” International Journal of Fuzzy Systems, vol. 10, no. 3, pp. 195-201, 2008.
[10] J. H. Chen, L. R. Yang, and M. C. Su, “Comparison of SOM-based optimization and particle swarm optimization for minimizing the construction time of a secant pile wall,” Automation in Construction, vol. 18, no. 6, pp. 844-848, 2009.
[11] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE International Conference on Neural Networks, vol. 4, pp.1942-1948, Dec. 1995.
[12] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proc. of the Sixth International Symposium on Micro Machine and Human Science, pp. 39-43, Oct. 1995.
[13] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence, New York: Academic Press, 2001.
[14] R. C. Eberhart and Y. Shi, “Comparison between genetic algorithms and particle swarm optimization,” in Proc. of the Seventh International Conference of Evolutionary Programming, pp. 611-616, 1998.
[15] J. Kennedy, “Small worlds and mega-minds: effects of neighborhood topology on particle swarm optimization,” in Proc. of IEEE International Conference on Evolutionary Computation, pp.1931-1938, Dec. 1999.
[16] M. Clerc, “The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization,” in Proc. of Congress Evolutionary Computation., vol. 3, pp. 1951–1957, Jul. 1999.
[17] M. Løvbjerg, T. K. Rasmussen, and T. Krink, “Hybrid particle swarm optimizer with breeding and subpopulations,” in Proc. of IEEE International Conference on Genetic Evolutionary, pp. 469–476, 2001.
[18] J. Robinson, S. Sinton, and Y. Rahmat-Samii, “Particle swarm, genetic algorithm, and their hybrids: Optimization of a profiled corrugated horn antenna,” in Proc. of IEEE International Symposium on Antennas and Propagation, pp. 314–317, San Antonio, TX, 2002.
[19] J. Kennedy and R. Mendes, “Topological structure and particle swarm performance,” in Proc. of the Congress on Evolutionary Computation, pp. 1671 - 1676, 2002.
[20] R. Mendes, J. Kennedy, and J. Neves, “Watch thy neighbor or how the swarm can learn from its environment,” in Iberoamerican Conference on Artificial Intelligence, Seville, pp. 88-94, 2002.
[21] T. M. Balckwell and P. J. Bentley, “Dynamic search with charged swarms,” in Proc. of IEEE International Conference on Genetic and Evolutionary, pp. 19-26, 2002.
[22] J. Kennedy and R. Mendes, “Neighborhood topologies in fully-informed and best-of-neighborhood particle swarms,” in IEEE SMC Workshop on Soft Computing in Industrial Applications, pp. 515-519, Jun 2003.
[23] S. C. Esquivel and C. A. CoelloCoello, “On the use of particle swarm optimization with multimodal functions,” in Proc. of IEEE Congress on Evolutionary Computation, vol. 2, pp. 1130–1136, 2003.
[24] X. H. Shi, Y. H. Lu, C. G. Zhou, H. P. Lee, W. Z. Lin, and Y. C. Liang, “Hybrid evolutionary algorithms based on PSO and GA,” in Proc. of IEEE Congress Evolutionary Computation, pp. 2393–2399, 2003.
[25] K. M. Christopher and K. D. Seppi, “The Kalman swarm. A new approach to particle motion in swarm optimization,” in Proc. of IEEE Conference on Genetic Evolutionary Computation, pp. 140–150, 2004.
[26] D. Devicharan and C. K. Mohan, “Particle swarm optimization with adaptive linkage learning,” in Proc. of IEEE Congress Evolutionary Computation, pp. 530–535, 2004.
[27] M. Settles and T. Soule, “Breeding swarms: A GA/PSO hybrid,” in Proc. of IEEE Conference on Genetic Evolutionary Computation, pp. 161–168, 2005.
[28] X. Chen and Y. Li, “A modified PSO structure resulting in high exploration ability with convergence guaranteed,” IEEE Trans. on Systems, Man, and Cybernetics, Part B, vol. 37, no. 5, pp. 1271–1289, Oct. 2007.
[29] Y. P. Chen, W. C. Peng, and M. C. Jian, “Particle swarm optimization with recombination and dynamic linkage discovery,” IEEE Trans. on Systems, Man, and Cybernetics, Part B, vol. 37, no. 6, pp. 1460–1470, Dec. 2007.
[30] S. Kiranyaz, T. Ince, A. Yildirim, and M. Gabbouj, “Fractional particle swarm optimization in multi-dimensional search space,” IEEE Trans on Systems, Man, and Cybernetics, Part B, vol. 40, no. 2, pp. 298–319, 2010.
[31] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. Cambridge, MA: MIT Press, 1998.
[32] C. Ribeiro, “Reinforcement learning agents,” Artificial Intelligence Review, vol. 17, pp. 223-250, 2002.
[33] L. P. Kaelbling, M. L. Littman, and A.W. Moore, “Reinforcement learning: a survey,” Journal of Artificial Intelligence Research, vol. 4, pp. 237-285, 1996.
[34] A.G. Barto, R.S. Sutton, and C.W. Anderson, “Neuronlike adaptive elements that can solve difficult learning control problems,” IEEE Trans on Systems, Man, and Cybernetics, vol.13, no.5, pp. 834-846, 1983.
[35] C. J. C. H. Watkins and P. Dayan, “Q-learning machine,” Machine Learning, vol. 8, pp. 279-292, 1992.
[36] M. Khajenejad, F. Afshinmanesh, A. Marandi, and B. N. Araabi, “Intelligent particle swarm optimization using Q-learning,” in Proc. of IEEE International Symposium on Swarm Intelligence, pp. 7–12, 2006.
[37] H. Iima and Y. Kuroe, “Swarm reinforcement learning algorithm based on exchanging information among agents,” Trans. on the Society of Instrument and Control Engineers, vol. 42, pp. 1244-1251, 2006.
[38] K. A. De Jong, “An analysis of the behaviour of a class of genetic adaptive systems,” University of Michigan, Ann Arbor, 1975. (University Microfilms No. 76-9381)
[39] G. B. Fogel, G. W. Greenwood, and K. Chellapilla, “Evolutionary computation with extinction: Experiments and analysis,” in Proc. of the 2000 Congress on Evolutionary Computation, pp. 1415–1420, 2000.
[40] R. Salomon, “Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions,” Elsevier Science on BioSystems, vol. 39, pp. 263–278, 1995.
[41] T. Krink and R. Thomsen, “Self-organized criticality and mass extinction in evolutionary algorithms,” in Proc. of IEEE International Conference on Evolutionary Computation, pp. 1155-1161, 2001.
[42] M. Richards and D. Ventura, “Dynamic sociometry in particle swarm optimization”, International Conference on Computational Intelligence and Natural Computing, pp. 1557-1560, 2003.
[43] Y. Shi and R. Eberhart, “Fuzzy adaptive particle swarm optimization,” in Proc. of the Congress on Evolutionary Computation, pp. 101-106, 2001.
[44] J. Vesterstrom and R. Thomsen, “A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems,” in Proc. of the 2004 Congress on Evolutionary Computation, vol. 2, pp. 1980-1987, 2004.
[45] The software packages for the GAs and the PSO algorithm:www.engr.iupui.edu/~ebergart/web/PSObook.html.
[46] J. W. Allen and F. W. Bruce, Power Generation, Operation, and Control. New York: Wiley, 1984.
[47] D. C. Walters and G. B. Sheble, “Genetic algorithm solution of economic dispatch with valve point loading,” IEEE Trans. on Power System, vol. 8, no. 3, pp. 1325–1332, Aug. 1993.
[48] G. B. Sheble and K. Brittig, “Refined genetic algorithm—Economic dispatch example,” IEEE Trans. on Power System, vol. 10, no. 1, pp. 117–124, Feb. 1995.
[49] P. H. Chen and H. C. Chang, “Large-scale economic-dispatch by genetic algorithm,” IEEE Trans. on Power System, vol. 10, no. 4, pp. 1919–1926, Nov. 1995.
[50] H. T. Yang, P. C. Yang, and C. L. Huang, “Evolutionary programming based economic dispatch for units with non-smooth fuel cost functions,” IEEE Trans. on Power System, vol. 11, no. 1, pp. 112–117, Feb. 1996.
[51] Y. M. Park, J. R. Won, and J. B. Park, “New approach to economic load dispatch based on improved evolutionary programming,” Engineering Intelligence System on Electronic Engineering Communication, vol. 6, no. 2, pp. 103–110, Jun. 1998.
[52] K. P. Wong and J. Yuryevich, “Evolutionary-programming-based algorithm for environmentally-constrained economic dispatch,” IEEE Trans. on Power System, vol. 13, no. 2, pp. 301–306, May 1998.
[53] T. Yalcinoz, H. Altun, and M. Uzam, “Economic dispatch solution using a genetic algorithm based on arithmetic crossover,” in Proc. of IEEE Conference on Power Technical, vol. 2. Sep. 10–13, 2001.
[54] W. M. Lin, F. S. Cheng, and M. T. Tsay, “Am improved Tabu search for economic dispatch with multiple minima,” IEEE Trans. on Power Systems, vol. 17, no. 1, pp. 108-112, 2002.
[55] N. Sinha, R. Chakrabarti, and P. K. Chattopadhyay, “Evolutionary programming technique for economic load dispatch,” IEEE Trans. on Evolutionary Computation, vol. 7, no. 1, pp. 83–94, Feb. 2003.
[56] S. Baskar, P. Subbaraj, and M. V. C. Rao, “Hybrid real coded genetic algorithm solution to economic dispatch problem,” Computation Electronic Engineering, vol. 29, no. 3, pp. 407–419, May 2003.
[57] Z. L. Gaing, “Particle swarm optimization to solving the economic dispatch considering the generator constraints,” IEEE Trans. on Power System, vol. 18, no. 3, pp. 1187–1195, Aug. 2003.
[58] T. A. A. Victoire and A. E. Jeyakumar, “Hybrid PSO-SQP for economic dispatch with valve-point effect,” Electronic Power System Res., vol. 71, no. 1, pp. 51–59, 2004.
[59] T. A. A. Victoire and A. E. Jeyakumar, “Particle swarm optimization to solving the economic dispatch considering the generator constraints,” IEEE Trans. on Power System, vol. 19, no. 4, pp. 2121–2122, 2004.
[60] J. B. Park, K. S. Lee, J. R. Shin, and K. Y. Lee, “A particle swarm optimization for economic dispatch with nonsmooth cost functions,” IEEE Trans. on Power System, vol. 20, no. 1, pp. 34–42, Feb. 2005.
[61] T. Jayabarathia, K. Jayaprakasha, D. N. Jeyakumarb, and T. Raghunathan, “Evolutionary programming techniques for different kinds of economic dispatch problems,” Electronic Power System Res., vol. 73, no. 2, pp. 169–176, 2005.
[62] R. Cheng, M. Gen, and Y. Tsujimura, “A tutorial survey of job-shop scheduling problems using genetic algorithms-I. Representation,” Computers and Engineering, vol. 30, no. 4, pp. 983-997, 1996.
[63] J. Gao, M. Gen, and L. Sun, “A Hybrid of Genetic Algorithm and Bottleneck Shifting for Flexible Job Shop Scheduling Problem,” in Proc. of IEEE Conference on Genetic Evolutionary Computation, pp.1157-1163, 2006.
[64] G. Beni, and J. Wang, “Swarm Intelligence in Cellular Robotic Systems”, in Proc. of the NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy, pp. 26-30, June 1989.
[65] P. P. Grasse, “La reconstruction du nid et les coordinations inter-individuelles chez bellicoitermes natalenis et cubitermes sp. La theorie de la stigmergie: Essaid’interpretation du comportement des termites constructeurs,” Insect Societies, vol. 6, pp. 41-83.
[66] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press, 1999.
[67] Health Care Financial Management Association Report, “Achieving operating room efficiency through processes integration,” 2005.
[68] I. Ozkarahan, “Allocation of Surgeries to Operating Rooms by Goal Programming,” Journal Medical Systems, vol.24, no.6, pp. 339-378, 2000.
[69] B. Denton, J. Viapiano, and A. Vogl, “Optimization of Surgery Sequencing and Scheduling Decisions under Uncertainty,” Health Care Manage Science, vol. 10, pp.13-24, 2007.
[70] Goldman, et al., “A study of the variability of surgical estimates,” Management 110, 1970.
[71] B. Denton, J. Viapiano, and A. Vogl, “Optimization of Surgery Sequencing and Scheduling Decisions under Uncertainty,” Health Care Manage Science, vol. 10, pp. 13-24, 2007.
[72] A. Guinet and S. Chaabane, “Operating Theatre Planning,” International Journal of Production Economics, vol. 85, pp.69-81, 2003.
[73] K. H. Hanson, “Computer-Assisted Operating Room Scheduling”, International Journal of Production Economics, vol. 99, pp. 52-62, 2006.
[74] A. Jebaili, A. B. H. Alouane, and P. Ladet, “Operating rooms scheduling”, International Journal of Production Economics, vol. 99, pp. 52-62, 2006.
[75] P. J. Kuzdrall, N. K. Kwak, and H. H. Schmitz, “Monte Carlo Simulation of Operating-Room and Recovery-Room Usage,” Operations Research, vol. 22, no. 2, pp.434-440, 1974.
[76] M. Lamiri, J. Dreo, and X. Xie, “Operating Room Planning with Random Surgery Times,” in Proc. of the third Annual IEEE Conference on Automation Science and Engineering Scottsdale, USA, pp. 521-526, Sep. 22-25, 2007.
[77] P. Bruker and R. Schlie, “Job-shop scheduling with multi-purpose machines,” Computing, vol. 45, pp. 369-375, 1990.
[78] P. Brandimarte, “Routing and scheduling in flexible job shops by tabu search,” Application in Production and Scheduling, vol. 41, pp. 157–183, 1993.
[79] J. Hurink, B. Jurisch, and M. Thole, “Tabu search for the job-shop scheduling problem with multi-purpose machines,” OR Spectrum, vol. 15, pp. 205–215, 1994.
[80] H. Zhang and M. Gen, “Multistage-based genetic algorithm for flexible job-shop scheduling problem,” Journal of Complexity International, vol. 11, pp. 223-232, 2005.
[81] J. Gao, M. Gen, and L. Sun, “A Hybrid of Genetic Algorithm and Bottleneck Shifting for Flexible Job Shop Scheduling Problem,” in Proc. of IEEE Conference on Genetic Evolutionary Computation, pp.1157-1163, 2006.
[82] N. Zribi, I. Kacem, A. E. Kamel, and P. Born, “Assignment and Scheduling in Flexible Job-Shops by Hierarchical Optimization,” IEEE Trans. on Systems, Man, and Cybernetics, part C, vol. 37, no. 4, pp. 652-661, July 2007.
[83] W. Xia and Z. Wu, “An effective hybrid optimization approach for muti-objective flexible job-shop scheduling problem,” Computers & Industrial Engineering, vol. 48, pp. 409-425, 2005.
|