博碩士論文 955401006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:18.224.61.12
姓名 劉仁傑(Jen-Chieh Liu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 全數位式鎖相迴路之設計與內建時脈抖動量測之應用
(Design of All Digital Phase-Locked Loop and Application in Built-in Jitter Measurement)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著綠能時脈系統的演進,具高速低功率之鎖相迴路(Phase-locked loop, PLL)與延遲迴路(Delay-locked loop, DLL)被提出來解決時脈的偏移問題。因此,低抖動量與高頻率精準度之時脈電路被用以提高可靠度與系統正確性。在低電壓操作應用中,其低功率的時脈產生器可以有效地延長電池的壽命。低電壓操作中,時脈分佈網域系統的時脈抖動會影響更顯著。所以時脈抖動量必須盡可能的降低與其抖動數值也必須小於時脈系統可以接受的範圍內。而且高頻晶片系統設計,採用內建式時脈量測電路用以量測時脈訊號的抖動量,可以有效的降低高頻測試之成本。
首先,本論文提出使用數位式電壓穩壓器以降低電壓雜訊與可達到高速具多相位功能之全數位式鎖相迴路(All digital phase-locked loops, ADPLLs)。其中,以數位式電壓穩壓器降低電壓雜訊影響之全數位式鎖相迴路。在數位式控制振盪器中,以一顆MOS元件擁有兩種解析度的數位電容器到達較高速頻率操作。當在電源上加入雜訊源後,其輸出訊號陡動可以降低至0.38% –TPLL / 1%–VDD。將雜訊加入整個全數位式鎖相迴路的電壓源後,其方均根抖動量(RMS jitter) 仍然可以小於 1%。另外,在數位式振盪器採用負迴授的電路架構之全數位式鎖相迴路,可以提高電路的操作頻率。在數位對時間轉換器中,採用多相位的取樣電路與時間放大器電路可以達到小面積與增加時間解析度的優點。因此,具數位式電壓穩壓器與多相位數位式振盪器擁有數位對時間轉換器功能可以有效操作於極低電壓之應用。
接著,本論文提出內建抖動測試電路(Built-in jitter measurements, BIJMs)量測時脈抖動並應用於高速傳輸介面與晶片系統。內建抖動測試電路採用提高時間解析度與自我校正的技巧。游標尺之環型振盪器(Vernier ring oscillator, VRO)與具多相位環形振盪器之取樣電路(Multi-phase sampler, MPS)可降低電路面積。採用時間放大電路的技巧可延伸抖動量測電路的解析度。在製程補償方面,調變時間放大器的增益與游標尺之環型振盪器或多相位取樣電路的解析度,亦可在製程變異下,達到高解析度功能。自我參考電路(Self-referenced circuit)使用自動校正電路並不需要額外提供一參考訊號。故在十億赫茲的操作頻率下,可以容易地實現於時脈系統中。
在本論文中所提出低電壓操作之全數位式鎖相迴路與內建抖動測試電路,可應用於時脈分佈網域系統。因此,在晶片系統中,全數位式鎖相迴路與內建抖動測試電路更具彈性於可重覆使用之矽智產設計。
摘要(英) With green energy-saving clocking systems, the high speed and low power consumption phase-locked loop (PLL) and delay-locked loop (DLL) are popular to solve the clock skew. The low jitter and high frequency accuracy of clock sources can improve the reliability and correctness of system. For low supply voltage application, the low power clock generators are adopted to extend the battery life. In clock distribution networks, the clock jitter may be large at low supply voltages. Thus, the clock jitter must be reduced and less than the jitter tolerance of clocking system. To measure the clock jitter, the jitter measurement circuits are useful to build in a system-on chip (SoC) and reduce the testing cost at high operational frequency clocking systems.
First, ultra low voltage all-digital phase-locked loops (ADPLLs) are proposed for the digital supply regulator to limit the digital controlled oscillator (DCO) supply noise effects and high speed DCO with multi-phase outputs. One adopts a digital supply regulator to reduce the noise supply effects. The DCO uses the two-step timing resolution of a digital controlled varactor to achieve the high operational frequency. By injecting the supply noise into the DCO, the ADPLL output jitter is limited to 0.38% –TPLL / 1% – VDD. When the supply noise is mixed into the ADPLL supply, the RMS jitter is less than 1%. The other employs a sub-feedback loop DCO scheme at high operational frequencies. The proposed multi-phase-based time-to-digital converter (MP-TDC) uses the multi-phase scheme to reduce the area and adopts a timing amplifier to extend the timing resolution of TDC. Therefore, the digital supply regulator and multi-phase DCO embedding a TDC are useful under the lower supply voltage applications.
Next, built-in jitter measurement circuits (BIJMs) are proposed to measure the clock jitter on high speed transceivers and SoC systems. The proposed BIJM circuits adopt a high timing resolution and self-calibration techniques. The vernier ring oscillator (VRO) and proposed multi-phase sampler (MPS) can reduce the area and the TA can extend the total timing resolution of BIJM. Using the calibration technique, the gain variation of TA and the timing resolution variation of VRO or MPS can be aligned to make sure timing resolution of BIJM. The self-referenced circuit with an auto-calibration technique can eliminate the process variations and create a reference clock being a sampled signal. BIJM circuits do not need an additional jitter-free reference signal using the self-referenced circuit. In the giga-hertz operational frequency, the proposed designs can be easy to build in clock source systems.
In the dissertation, we proposed the ultra low supply voltage ADPLLs and the built-in jitter measurement circuits in clock distribution networks. Thus, the ADPLLs and BIJM circuits are also suitable for reuse IPs in SoC systems.
關鍵字(中) ★ 低電壓操作
★ 內建時脈抖動量測電路
★ 全數位式鎖相迴路
關鍵字(英) ★ low supply voltage
★ Built-in Jitter Measurement
★ All Digital Phase-Locked Loop
論文目次 Contents
摘要 i
Abstract iii
誌謝 vi
Contents vii
Figure Captions x
Table Captions xiv
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Analysis and Design of BIJM for Clocking Systems 4
1.3 Thesis Organization 5
Chapter 2 The Basics of All Digital PLLs and Built-in Jitter Measurement Circuits 7
2.1 Phase-Locked Loop 7
2.2 Overview of All Digital PLLs 9
2.2.1 WIDE POWER SUPPLY RANGE ADPLL 10
2.2.2 PVT TOLERANT AND CALIBRATION-FREE ADPLLS 11
2.2.3 LC-TANK BASED DIGITAL PLL 13
2.2.4 ALL DIGITAL SPREAD-SPECTRUM PLL 14
2.2.5 SUMMARY 15
2.3 Built-in Jitter Measurement Circuits 16
2.3.1 VERNIER DELAY LINE BASED TDC 17
2.3.2 VERNIER RING OSCILLATOR BASED TDC 18
2.3.3 TDC WITH TIMING AMPLIFIER CIRCUITS 18
2.3.4 CYCLIC PULSE-SHRINKING TDC 19
2.3.5 CHARGE-PUMP PLL EMBEDDING A TDC 20
2.3.6 SUMMARY 20
Chapter 3 An Ultra Low Voltage All Digital PLL with a Digital Supply Regulator 23
3.1 Architecture of ADPLL with a DSR 23
3.1.1 DIGITAL SUPPLY REGULATOR WITH AN AUTO-CALIBRATION CIRCUIT 25
3.1.2 DIGITAL CONTROLLED OSCILLATOR 29
3.1.3 DOUBLE EDGE TRIGGER DIGITAL LOOP FILTER 32
3.1.4 PFD AND TDC 34
3.2 Stability and Noise Analysis of ADPLL 35
3.2.1 BEHAVIOR MODEL OF ADPLL 35
3.2.2 NOISE ANALYSIS OF ADPLL 37
3.3 Experiment Results 39
3.3.1 CONCEPT 39
3.3.2 MEASURED ENVIRONMENT SETUP 39
3.3.3 0.5 V AND 0.6 V ADPLL 40
3.3.4 SUPPLY VOLTAGE SENSITIVITY OF ADPLL 44
Chapter 4 A Multi-phase All Digital PLL Embedding a TDC 47
4.1 Architecture of Multi-phase ADPLL 47
4.1.1 ANALYSIS AND IMPLEMENTATION OF THE PROPOSED MULTI-PHASE DCO 48
4.1.2 MULTI-PHASE-BASED TDC WITH A TA 53
4.2 Stability of Multi-phase DPLL Using a MP-TDC 56
4.3 Experiment Results 57
4.3.1 CONCEPT 57
4.3.2 MEASURED RESULTS 57
Chapter 5 A BIJM Circuit with Calibration Techniques 63
5.1 Architecture of BIJM with Calibration Techniques 63
5.1.1 CALIBRATION MODE 64
5.1.2 JITTER MEASUREMENT MODE 65
5.1.3 VERNIER RING OSCILLATOR WITH A CALIBRATION TECHNIQUE 67
5.1.4 TIMING AMPLIFIER USING A PROGRAMMABLE TA GAIN 68
5.1.5 SELF-REFERENCED CIRCUIT 71
5.1.6 WRITE / READ COUNTER 72
5.1.7 TOTAL TIMING RESOLUTION AND JITTER HISTOGRAM 73
5.2 Measured error Analysis 77
5.3 Measured results 79
5.3.1 CONCEPT 79
5.3.2 CALIBRATION AND JITTER MEASUREMENT MODES 80
5.3.3 MEASURED ERROR 83
Chapter 6 A BIJM Circuit Using a Multi-phase Sampler 85
6.1 Architecture of BIJM with a MPS 85
6.1.1 PRINCIPLE OF THE BIJM SYSTEM 85
6.1.2 MULTI-PHASE OSCILLATOR 87
6.1.3 MULTI-PHASE SAMPLER 90
6.1.4 TA WITH A CALIBRATION CIRCUIT 92
6.1.5 WRITE / READ COUNTER 94
6.2 Measured error Analysis 94
6.3 Simulated results 96
6.3.1 CALIBRATION MODE 96
6.3.2 JITTER HISTOGRAM 98
6.4 Experiment Results 99
6.4.1 CONCEPT 99
6.4.2 MEASURED RESULTS 99
Chapter 7 Conclusions and Future Works 105
7.1 Conclusions 105
7.2 Future Works 107
References 108
Publication List 113
參考文獻 [1] J. F. Bulzacchelli, M. Meghelli, S. V. Rylov, W. Rhee, A. V. Rylyakov, H. A. Ainspan, B. D. Parker, M. P. Beakes, A. Chung, T. J. Beukema, P. K. Pepeljugoski, L. Shan, Y. H. Kwark, S. Gowda, and D. J. Friedman, “A 10-Gb/s 5-tap DFE/4-tap FFE transceiver in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no.12, pp. 2885–2900, Dec. 2006.
[2] V. Balan, J. Caroselli, J. G. Chern, C. Chow, R. Dadi, C. Desai, L. Fang, D. Hsu, P. Joshi, H. Kimura, C. Y. Liu, T. W. Pan, R. Park, C. You, Y. Zeng, E. Zhang, and F. Zhong, “A 4.8-6.4-Gb/s serial link for backplane applications using decision feedback equalization,” IEEE J. Solid-State Circuits, vol. 40, no.9, pp. 1957–1967, Sep. 2005.
[3] Z. Lin, A. Carpenter, B. Ciftcioglu, A. Garg, M. Huang, and H. Wu, “Injection-locked clocking: a low-power clock distribution scheme for high-performance microprocessors,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16, no. 9, pp. 1251–1256, Sep. 2008.
[4] B. Kaminska, “BIST means more measurement options for designers,” News EDN, pp. 161–166, Dec. 2000.
[5] T. Rahkonen and J. Kostamovaara, “The use of stabilized CMOS delay lines for the digitization of short time intervals,” IEEE J. Solid-State Circuits, vol. 28, no.8, pp. 887–894, Aug. 1993.
[6] S. Sunter and A. Roy, “BIST for phase-locked loops in digital applications,” in Proc. IEEE Int. Test Conf., 1999. pp. 532–540.
[7] A. Chan and G. Roberts, “A jitter characterization system using a component-invariant vernier delay line,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12, no.1, pp. 79–95, Jan. 2004.
[8] S. Tabatabaei and A. Ivanov, “Embedded timing analysis: a SoC infrastructure” IEEE Des. Test Comput., vol. 19, no.3, pp. 22–34, May–Jun. 2002.
[9] K. Nose, M. Kajita, and M. Mizuno, “A 1-ps resolution jitter measurement macro using interpolated jitter oversampling,” IEEE J. Solid-State Circuits, vol. 41, no.12, pp. 2911–2920, Dec. 2006.
[10] S.-Y. Jiang, K.-H. Cheng, and P.-Y. Jian, “A 2.5-GHz built-in jitter measurement system in a serial-link transceiver,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17, no.12, pp. 1698–1708, Dec. 2009.
[11] T. Hashimoto, Hirotaka. Yamazaki, A. Muramatsu, T. Sato, and A. Inoue, “Time-to-digital converter with vernier delay mismatch compensation for high resolution on-die clock jitter measurement,” in Proc. IEEE Symp. on VLSI, 2008, pp. 166–167.
[12] R. Rashidzadeh, M. Ahmadi, and W. C. Miller, “An all-digital self-calibration method for a vernier-based time-to-digital converter,” IEEE Trans. Instrum. Meas., vol. 59, no. 2, pp.463–469, Feb. 2010.
[13] R. Rashidzadeh, R. Muscedere, M. Ahmadi, and W. C. Miller, “A Delay Generation Technique for Narrow Time Interval Measurement,” IEEE Trans. Instrum. Meas., vol. 58, no. 7, pp.2245–2252, Jul. 2009.
[14] N. Soo, “Jitter measurement techniques,” Pericom, Application Brief AB36, pp. 1–3, Nov. 2000.
[15] S. Drago, D. M. W. Leenaerts, B. Nauta, F. Sebastiano, K. A. A. Makinwa, and L. J. Breems, “A 200 uA duty-cycled PLL for wireless sensor nodes in 65 nm COMS,” IEEE J. Solid-State Circuits, vol. 45, no. 7, pp. 1305–1315, Jul. 2010.
[16] E. Temporiti, C. Weltin-Wu, D. Baldi, R. Tonietto, and F. Svelto , “A 3 GHz fractional all-digital PLL with a 1.8 MHz bandwidth implementing spur reduction techniques,” IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 824–834, Mar. 2009.
[17] S.-Y. Yang, W.-Z. Chen, and T.-Y. Lu, “A 7.1 mW, 10 GHz all digital frequency synthesizer with dynamically reconfigured digital loop filter in 90 nm COMS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 578–586, Nov. 2010.
[18] T. Tokairin, M. Okada, M. Kitsunezuka, T. Maeda, and M. Fukaishi, “A 2.1-to-2.8 GHz all-digital frequency synthesizer with a time-windowed TDC,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2010. pp. 470–471.
[19] M. Zanuso, S. Levantino, C. Samori, and A. Lacaita, “A 3 MHz-BW 3.6 GHz digital fractional-n PLL with sub-gate-delay TDC, phase-interpolation divider, and digital mismatch cancellation,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2010, pp. 476–477.
[20] C. Weltin-Wu, E. Temporiti, D. Baldi, M. Cusmai, and F. Svelto, “A 3.5 GHz wideband ADPLL with fractional spur suppression through TDC dithering and feedforward compensation,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2010, pp. 468–469.
[21] R. Tonietto, E. Zuffetti, R. Castello, and I. Bietti, “A 3 MHz bandwidth low noise RF all digital PLL with 12 ps resolution time to digital converter,” IEEE European Solid-State Circuits Conf., 2006, pp. 150–153.
[22] A. V. Rylyakov, J. A. Tierno, D. Z. Turker, J.-O. Plouchart, H. A. Ainspan, and D. Friedman, “A modular all-digital PLL architecture enabling both 1-to-2 GHz and 24-to-32 GHz operation in 65 nm CMOS,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2008. pp. 516–632.
[23] J. A. Tierno, A. V. Rylyakov, and D. J. Friedman, “A wide power supply range, wide tuning range, all static CMOS all digital PLL in 65 nm SOI,” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 42–51, Jan. 2008.
[24] K.-H. Choi, J.-B. Shin, J.-Y. Sim, and H.-J. Park, “An interpolating digitally controlled oscillator for a wide-range all-digital PLL,” IEEE Trans. Circuits Syst. I, Reg. papers, vol.56, no. 9, pp. 2055–2063, Sep. 2009.
[25] J. Lin, B. Haroun, T. Foo, J.-S. Wang, B. Helmick, S. Randall, T. Mayhugh, C. Barr, and J. Kirkpatric, “A PVT tolerant 0.18 MHz to 600 MHz self-calibrated digital PLL in 90nm CMOS process,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2004, pp. 488–489.
[26] W. Liu, W. Li, P. Ren, C. Liu, S. Zhang, and Y. Wang, “A PVT tolerant 10 to 500 MHz all-digital phase-locked loop with coupled TDC and DCO,” IEEE J. Solid-State Circuits, vol. 45, no. 2, pp. 314–321, Feb. 2010.
[27] I.-C. Hwang, S.-H. Song, and S.-W. Kim, “A digitally controlled phase-locked loop with a digital phase-frequency detector for fast acquisition,” IEEE J. Solid-State Circuits, vol. 36, no. 10, pp. 1574–1581, Oct. 2001.
[28] T. Olsson and P. Nilsson, “A digitally controlled PLL for SoC applications,” IEEE J. Solid-State Circuits, vol. 39, no. 5, pp.751–760, May 2004.
[29] C.-C. Chung and C.-Y. Lee, “An all-digital phase-locked loop for high-speed clock generation,” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 347–351, Feb. 2003.
[30] P.-L. Chen, C.-C. Chung, J.-N. Yang, and C.-Y. Lee, “A clock generator with cascaded dynamic frequency counting loops for wide multiplication range applications,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1275–1285, Jun. 2006.
[31] J. Dunning, G. Garcia, J. Lundberg, and E. Nuckolls, “An all-digital phase-locked loop with 50-cycle lock time suitable for high-performance microprocessors,” IEEE J. Solid-State Circuits, vol. 31, no. 4, pp. 412–422, Apr. 1995.
[32] V. Kratyuk, P. K. Hanumolu, K.Ok, U.-K. Moon, and K. Mayaram, “A digital PLL with a stochastic time-to-digital converter,” IEEE Trans. Circuits Syst. I, Reg. papers, vol.56, no. 8, pp. 1612–1620, Aug. 2009.
[33] L. Xiu, W. Li, J. Meiners, and R. Padakanti, “A novel all-digital PLL with software adaptive filter,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 476–483, Mar. 2004.
[34] S.-Y. Lin and S.-I. Liu, “A 1.5 GHz all-digital spread-spectrum clock generator,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3111–3119, Nov. 2009.
[35] P.-H. Hsieh, J. Maxey, and C.-K. K. Yang, “A phase-selecting digital phase-locked loop with bandwidth tracking in 65-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 781–792, Apr. 2010.
[36] W. Grollitsch, R. Nonis, and N. D. Dalt, “A 1.4 psrms-period-jitter TDC-less fractional-n digital PLL with digitally controlled ring oscillator in 65 nm CMOS,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2010, pp. 478–479.
[37] H.-J. Hsu and S.-Y. Huang, “A low-jitter ADPLL via a suppressive digital filter and interpolation-based locking scheme,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no.1, pp. 165–170, Jan. 2011.
[38] H.-Y. Huang, J.-C. Liu, and K.-H. Cheng, “All-digital PLL using pulse-based DCO,” IEEE Int. Conf. on Electronics, Circuits and Systems, 2007, pp. 1268–1271.
[39] International Technology Roadmap for Semiconductors (ITRS), (2010). ITRS repot – 2010 update. Available:
http://www.itrs.net/Links /2010ITRS/ Home2010.htm
[40] M. S.-W. Chen, D. Su, and S. Mehta, “A calibration-free 800 MHz fractional-n digital PLL with embedded TDC,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2010, pp. 472–473.
[41] M. Lee, M. E. Heidari, and A. A. Abidi, “A low-noise wideband digital phase-locked loop based on a coarse–fine time-to-digital converter with subpicosecond resolution,” IEEE J. Solid-State Circuits, vol. 44, no.10, pp. 2808–2816, Oct. 2009.
[42] K.-H. Cheng, J.-C. Liu, C.-Y. Cang, S.-Y. Jiang, and K.-W. Hong, “Built-in jitter measurement circuit with calibration techniques for a 3-ghz clock generator,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.19, no.8, pp.1325–1335, Aug. 2011.
[43] M. Lee and A. A. Abidi, “A 9 b, 1.25 ps resolution coarse–fine time-to-digital converter in 90 nm CMOS that amplifies a time residue,” IEEE J. Solid-State Circuits, vol. 43, no.4, pp. 769–777, Apr. 2008.
[44] G. W. Roberts and M. Ali-Bakhshian, “A brief introduction to time-to-digital and digital-to-time converters,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 3, pp. 153–157, Mar. 2010.
[45] T. Xia and J.-C. Lo, “Time-to-voltage converter for on-chip jitter measurement,” IEEE Trans. Instrum. Meas., vol. 52, no. 6, pp.1738–1748, Dec. 2003.
[46] S. Sunter and A. Roy, “On-chip digital jitter measurement, from megahertz to gigahertz,” IEEE Des. Test Comput., vol. 21, no.4, pp. 314–321, Jul.–Aug. 2004.
[47] S. Narendra, J. Tschanz, J. Hofsheier, B. Bloechel, S. Vangal, Y. Hoskote, S. Tang, D. Somasekhar, A. Keshavarzi, V. Erraguntla, G. Dermer, N. Borkar, S. Borkar, and V. De, “Ultra-low voltage circuits and processor in 180 nm to 90 nm technologies with a swapped-body biasing technique” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2004, pp. 156–157.
[48] V. Kratyuk, P. K. Hanumolu, U.-K. Moon, and K. Mayaram, “A design procedure for all-digital phase-locked loops based on a charge-pump phase-locked-loop analogy,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.54, no. 3, pp. 247–251, Mar. 2007.
[49] C.-H. Lee, K. McClellan, and J. Choma Jr., “A supply-noise-insensitive CMOS PLL with a voltage regulator using DC-DC capacitive converter,” IEEE J. Solid-State Circuits, vol. 36, no. 10, pp. 1453–1463, Oct. 2001.
[50] X. Gao, E. Klumperink, P. Geraedts, and B. Nauta, “Jitter analysis and a benchmarking figure-of-merit for phase-locked loops,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.54, no. 3, pp. 117–121, Feb. 2009.
[51] M. Mansuri and C.-K. K. Yang, “A low-power adaptive bandwidth PLL and clock buffer with supply-noise compensation,” IEEE J. Solid-State Circuits, vol. 38, no. 11, pp. 1804–1812, Nov. 2003.
[52] A. Arakali, S. Gondi, and P. K. Hanumolu, “A 0.5-to-2.5 GHz supply-regulated PLL with noise sensitivity of -28 dB,” IEEE Custom Int. Circuits Conf, 2008. pp. 443–446.
[53] A. Arakali, N. Talebbeydokthi, S. Gondi, and P. K. Hanumolu, “Supply-noise mitigation techniques in phase-locked loops,” IEEE European Solid-State Circuits Conf., 2008, pp. 374–377.
[54] T. Toifl, C. Menolfi, P. Buchmann, M. Kossel, T. Morf, and M. L. Schmatz, “A 1.25–5 GHz clock generator with high-bandwidth supply-rejection using a regulated-replica regulator in 45-nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 2901–2910, Nov. 2009.
[55] A. Matsumot, S. Sakiyama, Y. Tokunaga, T. Morie, and S. Dosho, “A design method and developments of a low-power and high-resolution multiphase generation system,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 831–843, Apr. 2008.
[56] K.-H. Kim, Y.-S. Sohn, C.-K. Kim, M. Park, D.-J. Lee, W.-S. Kim, and C. Kim, “A 20-Gb/s 256-Mb DRAM with an inductorless quadrature PLL and a cascaded pre-emphasis transmitter,” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 127–134, Jan. 2006.
[57] H.-Y. Huang and F.-C. Tasi, “Analysis and optimization of ring oscillator using sub-feedback scheme,” IEEE Int. Symp. on Design and Diagnostics of Electronic Circuits and Syst., 2009, pp. 28–29.
[58] L. Sun, T. Kwasniewski, and K. Iniewski, “A quadrature output voltage controlled ring oscillator based on three-stage sub-feedback loops,” IEEE Int. Symp. Circuits and Syst., 1999, pp. 176–179.
[59] K.-H. Cheng, C.-C. Hu, J.-C. Liu, and H.-Y. Huang, “A time-to-digital converter using multi-phase-sampling and time amplifier for all digital phase-locked loop,” IEEE Int. Symp. on Design and Diagnostics of Electronic Circuits and Syst., 2010, pp. 285–288.
[60] M. Oulmane and G. W. Roberts, “A CMOS time amplifier for femto-second resolution timing measurement,” in Proc. IEEE Int. Symp. Circuits Syst., 2004, pp. 1416–1420.
[61] T. Xia, H. Zheng, J. Li, and A. Ginawi, “ Self-refereed on-chip jitter measurement circuit using vernier oscillators,” in Proc. IEEE Comput. Soc. Annu. Symp. on VLSI, 2005, pp. 218–223.
[62] J. C. Hsu and C. C. Su, “BIST for measuring clock jitter of charge-pump phase-locked loops,” IEEE Trans. Instrum. Meas., vol. 57, no. 2, pp.276–284, Feb. 2008.
[63] K.-H. Cheng, J.-C. Liu, H.-Y. Huang, Y.-L. Li, and Y.-J. Jhu, “A 6 GHz built-in jitter measurement circuit using multi-phase sampler,” IEEE Trans. on Circuits and Syst. II, Exp. Briefs, vol.19, no.58, pp.492–496, Aug. 2011.
[64] K.-F. Un, P.-I. Mak, and R. P. Martins, “Analysis and design of open-loop multiphase local-oscillator generator for wireless applications,” IEEE Trans. Circuits Syst. I, Reg. papers, vol. 57, no. 5, pp. 970–981, May 2010.
指導教授 黃弘一、鄭國興
(Hong-Yi Huang、Kuo-Hsing Cheng)
審核日期 2012-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明