參考文獻 |
[1] Agrawal, A.K. and Yang J.N. (1999), “Optimal Placement of Passive Dampers on Seismic and Wind-excited Buildings Using Combinatorial Optimization,” Journal of Intelligent Material Systems and Structures, Vol. 10, pp 997-1014.
[2] AL-Kazemi, B., and Mohan, C. K. (2002), “Multi-Phase Generalization of the Particle Swarm Optimization Algorithm,” Proceedings of the IEEE Congress on Evolutionary Computation, Vol. 1, pp. 489?494.
[3] Aydin, E., Boduroglu, M.H. and Guney, D.(2007), “Optimal Damper Distribution for Seismic Rehabilitation of Planar Building Structures,” Engineering Structures, Vol 29, pp 176-185.
[4] Bishop, J.A. and Striz, A.G. (2004), “On Using Genetic Algorithms for Optimum Damper Placement in Space Trusses,” Struct Multidisc Optim, Vol 28, pp.136-145.
[5] Carlisle, A., and Dozier, G. (2001), “An off-the-shelf PSO,” Proceedings of the Workshop on Particle Swarm Optimization, Vol. 1, pp. 1?6.
[6] Chang, K.C., Lin, Y.Y. and Lai, M.L. (1998), “Seismic Analysis and Design of Structures with Viscoelastic Dampers,” ISET Journal of Earthquake Technology, Paper No.380, Vol. 35, No. 4, pp. 143-166.
[7] Clerc, M. (1999), “The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization,” Proceedings of the Congress on Evolutionary Computation, Vol. 3, pp. 1951-1957.
[8] Eberhart, R.C., and Kennedy, J. (1995), “A New Optimizer Using Particle Swarm Theory,” Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39-43.
[9] Eberhart, R. C., and Shi, Y. (1998), “Comparison Between Genetic Algorithms and Particle Swarm Optimization,” In: Proceedings of the Seventh Annual Conference on Evolutionary Programming, pp. 611?616.
[10] Fourie, P. C., and Groenwold A. A. (2002), “The Particle Swarm Optimization Algorithm in Size and Shape Optimization,” Structural and Multidisciplinary Optimization, Vol. 23, No. 4, pp. 259?267.
[11] Hsu, H.L., Jean, S.Y.(2003), “Improving Seismic Design Efficiency of Petrochemical Facilities”, Practice Periodical on Structural Design and Construction, Vol. 8, No.2 , pp. 107-117
[12] Kawashima, K. and Unjoh, S. (1994) , “Seismic Response Control of Bridges by Variable Dampers,” Journal of Structural Engineering, ASCE, Vol. 120, pp. 2583-2601.
[13] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983), “Optimization by Simulated Annealing,” Science, Vol. 220, No. 4598, pp.671?680.
[14] Kohei, F., Abbas M. and Izuru T.(2010), “Optimal Placement of Viscoelastic Dampers and Supporting Members under Variable Critical Excitations,” Earthquakes and Structures, Vol. 1, No. 1, pp. 43-67.
[15] Lee, T.Y. and Kawashima, K.(2006), “Effectiveness of Seismic Displacement Response Control for Nonlinear Isolated Bridge,” Journal of Structural Mechanics and Earthquake Engineering, JSCE, Vol. 62, pp. 161-175.
[16] Lee, T.Y., Chen, P.C. and Juang, D.S. (2010), “Pole Assignment Using PSO-SA Hybrid Algorithm for Sliding Mode Control on Isolated Bridges with Columns of Irregular Height,” CD-ROM Proceedings of 9th U.S. National and 10th Canadian Conferenceon Earthquake Engineering, Toronto, Canada , July 25-29.
[17] Metropolis, N., Rosenbluth, A. W., Teller, A. H., and Teller, E. (1953), “Equation of State Calculation by Fast Computing Machines,” Journal of Chemical Physics, Vol. 21, No. 6, pp. 1087?1092.
[18] Newmark, N. M. (1959). “A Method of Computation for Structural Dynamics.” Journal of Engineering Mechanics Division, ASCE, 85(3), 97-94.
[19] Ting, E. C., Shih, C. and Wang, Y. K. (2004), "Fundamentals of a Vector Form Intrinsic Finite Element: Part I. Basic Procedure and a Plane Frame Element," Journal of Mechanics, Vol.20, No.2, pp. 113-122.
[20] Ting, E. C., Shih, C. and Wang, Y. K. (2004), "Fundamentals of a Vector Form Intrinsic Finite Element: Part II. Plane Solid Elements," Journal of Mechanics, Vol.20, No.2, pp. 123-132.
[21] Ratnaweera, A., Halgamuge, SK., and Watson, HC. (2004), “Swlf-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients,” IEEE Transactions on Evolutionary Computation, Vol.8, No.3, pp. 240-255.
[22] Shi, Y., and Eberhart, R. C. (1998), “Parameter Selection in Particle Swarm Optimization,” V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben (eds), Lecture Notes in Computer Science, 1447, Evolutionary Programming VII, Springer, Berlin, pp. 591?600.
[23] Shih C., Wang, Y. K. and Ting, E. C. (2004), "Fundamentals of a Vector Form Intrinsic Finite Element: Part III. Convected Material Frames and Examples," Journal of Mechanics, Vol.20, No.2, pp. 133-143.
[24] Wang, L., Li, L. L., and Zheng, D. Z. (2003), “A Class of Effective Search Strategies for Parameter Estimation of Nonlinear Systems,” ACTA Automatica Sinica, Vol. 29, No. 6, pp. 953?958.
[25] Wang,C. Y., Wang, R. Z., Kang, L. C. and Ting, E. C. (2004), "Elastic-Plastic Large Deformation Analysis of 2D Frame Structure," Proceedings of the 21st International Congress of Theoretical and Applied Mechanics (IUTAM), SM1S-10270, Warsaw, Poland, August 15-21.
[26] Wang, J.F., Lin C.C. and Chen B.L. (2003), “Vibration suppression for high-speed railway bridges using tuned mass dampers,” International Journal of Solids and Structures, Vol. 40, pp. 465-491.
[27] Wang, X.Y., Ni, Y.Q., Ko, J.M. and Chen, Z.Q. (2005), “Optimal design of viscous dampers for multi-mode vibration control of bridge cables,” Engineering Structures, Vol. 27, pp. 792-800.
[28] Wu, T. Y., Wang, R. Z. and Wang, C. Y. (2006), "Large Deflection Analysis of Flexible Planar Frames," Journal of the Chinese Institute of Engineers, Vol. 29, No. 4, pp. 593-606.
[29] Xie, X. F., Zhang, W. J., and Yang, Z. L. (2002), “A Dissipative Particle Swarm Optimization,” Proceedings of the IEEE Congress on Evolutionary Computation, Vol. 2, pp. 1456?1461.
[30] Yang, J. N. (1996),“ Overview of protective system ” , Workshop on Application of Various Protective Systems to Bridge and Structure, Taipei, Taiwan, pp.1-86.
[31] Yang, J.N., Lin, S.L. and Agrawal, A.K. (2002), “Optimal Design of Passive Supplemental Dampers Based on H¬∞ and H2 performances,” Earthquake Engineering and Structural Dynamics, Vol. 31, pp 921-936.
[32] 王仁佐、王仲宇、盛若磐(2005),「向量式結構運動分析」,國立中央大學土木工程學研究所博士論文。
[33] 王昱婷(2011),「隅撐抗彎構架之性能設計研究與分析」,碩士論文,國立中央大學土木工程研究所,中壢市。
[34] 李世炳、鄒忠毅(2002),「簡介導引模擬退火法及其應用」,物理雙月刊,第二十四卷,第二期,第307?319頁。
[35] 李宗籌(2010),「具挫屈控制機制之隅撐構架耐震行為研究」,碩士論文,國立中央大學土木工程研究所,中壢市。
[36] 莊清鏘、陳詩宏、王仲宇 (2006),〝向量式有限元於結構被動控制之應用〞,固體與結構之工程計算-2006近代工程計算論壇,第01-025頁。
[37] 莊德興、莊玟珊(2007),”PSO-SA 混和搜尋法與其在結構最佳化設計之應用”,中華民國力學學會第三十一屆全國力學會議,高雄。
[38] 陳柏宏、李姿瑩(2008),「運用向量式有限元素法於隔震橋梁之非線性動力分析」,國立中央大學土木工程學研究所碩士論文。
[39] 汪柏靈、李姿瑩(2009),「橋梁極限破壞分析與耐震性能研究」,國立中央大學土木工程學研究所碩士論文。
|