博碩士論文 993202028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:3.138.175.166
姓名 黃募甄(Mu-Chen Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 最佳化設計於結構被動控制之應用
(Applications of Optimization Method for the Design of Passive Control Device Used in Structures)
相關論文
★ PSO-DE混合式搜尋法應用於結構最佳化設計的研究★ 考量垂直向效應之多項式摩擦單擺支承之分析與設計
★ 以整合力法為分析工具之結構離散輕量化設計效率的探討★ 多項式摩擦單擺支承之二維動力分析與最佳參數研究
★ 構件考慮剛域之向量式有限元素分析研究★ 矩形鋼管混凝土考慮局部挫屈與二次彎矩效應之軸壓-彎矩互制曲線研究
★ 橋梁多支承輸入近斷層強地動極限破壞分析★ 穩健設計於結構被動控制之應用
★ 二維結構與固體動力分析程式之視窗介面的開發★ 以離心機實驗與隱式動力有限元素法模擬逆斷層滑動
★ 以離心模型實驗探討逆斷層錯動下群樁基礎與土壤的互制反應★ 九二一地震大里奇蹟社區倒塌原因之探討
★ 群樁基礎之最低價設計★ 應用遺傳演算法於群樁基礎低價化設計
★ 應用Discrete Lagrangian Method於群樁基礎低價化設計★ 九二一地震『台中綠色大地社區』 受損原因之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘 要
本研究主要探討結構物中配置線性黏滯阻尼器之最佳化設計問題,並針對不等高橋墩隔震橋梁及平面鋼骨抗彎構架進行研究,其中不等高橋墩橋梁是以阻尼器的阻尼係數和墩柱支承勁度為設計參數,並經由最佳化方法找出阻尼器與支承勁度的配置方式來達到最佳減振效果;平面鋼骨抗彎構架則以阻尼器的阻尼係數和配置位置為設計參數,藉由最佳化方法來決定阻尼器的配置方式,期可有效降低目標結構之受震反應。
研究中,將橋梁結構簡化為集中質量系統,並建立其運動方程式,再透過直接積分法分析受震歷時反應;鋼骨構架則採用向量式有限元素法(VFIFE)作為分析工具,求得目標建築之受震反應。設計過程均採用混合粒子群演算法及模擬退火法之 PSO-SA搜尋法來求得最佳設計變數的組合,使目標結構之受震反應最小化。
經由數個設計案例的結果可發現,不論是遠域震波或近域震波,透過最佳化設計法均可找到適合的設計參數,使目標結構之受震反應有效地降低。文末亦將針對設計結果探討遠域震波與近域震波下阻尼器配置的差異性與減振效益。
摘要(英) The purpose of this research is aimed to find the optimal capacity and location of viscous dampers installed in structures for mitigating seismic response of the structures. There are two different type of structural systems are considered in this research. One of them is the isolated bridge with columns of irregular height, and the other is a planar steel moment resisting frame. For the isolated bridge, the design variables are the capacity of viscous dampers and the stiffness of bearings. For the planar moment resisting frame, the design variables are the capacity of dampers and the nodal coordinates of the two ends of each damper where it will be installed. To minimize the seismic responses of structures, a PSO-SA (Particle Swarm Optimization-Simulated Annealing) hybrid searching algorithm is employed to explore the optimal design variables.
The analytical model for the bridge structure is simplified as a lumped mass system and the behaviors of columns and bearing are both considered as bilinear. The direct integration method is then used to analyze the seismic responses of the bridge. For the moment resisting frame, the vector form intrinsic finite element method (VFIFE) is employed to analyze the seismic responses.
The numerical results clearly show that the PSO-SA hybrid algorithm can successfully find the optimal design variables for effectively minimizing the responses of the bridge structure and the moment resisting frame under either near field and far field seismic excitations. Parametric studies on the influences of optimal solutions for near field and far field seismic excitations are also discussed in the report.
關鍵字(中) ★ 不等高橋墩隔震橋梁
★ 平面鋼骨抗彎構架
★ 黏滯阻尼器配置
★ 最佳化設計
關鍵字(英) ★ viscous dampers
★ planar moment resisting frame
★ isolated bridge with columns of irregular height
★ bearings
★ optimum design.
論文目次 摘 要 I
Abstract II
誌 謝 III
目 錄 V
表 目 錄 X
圖 目 錄 XVI
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 4
1.2.1橋梁結構 4
1.2.2建築結構 6
1.3 論文架構 10
第二章 PSO-SA混合式搜尋法 11
2.1 粒子群演算法(PSO) 11
2.1.1 PSO基本模式 13
2.1.2常數慣性權重(Constant Inertia Weight) 14
2.1.3線性慣量遞減(Linear Inertia Reduction) 15
2.1.4最大速度限制(Limitation of Maximum Velocity) 16
2.1.5動態慣量及最大速度遞減(Dynamic Inertia and Maximum Velocity Reduction) 16
2.1.6 PSO之演算程序 18
2.2 模擬退火法(Simulated Annealing) 19
2.2.1 SA的跳躍機制 20
2.2.2 SA之演算程序 21
2.3 PSO-SA混合搜尋法 23
2.3.1 PSO-SA-Pg混合策略 23
2.3.2修正PSO-SA-Pg混合搜尋法 25
第三章 不等高橋墩橋梁隔震支承與阻尼器最佳設計 32
3.1 橋梁結構之分析方法 32
3.1.1目標橋梁之細部資料 32
3.1.2目標橋梁之分析模型與構材受力變形關係 33
3.1.3直接積分法 36
3.1.4 Newmark-β法 37
3.1.5 Runge-Kutta 法 40
3.1.6求解運動方程式 41
3.2 目標橋梁最佳化問題的數學模式 43
3.2.1目標橋梁最佳化設計問題的描述 43
3.2.2目標橋梁最佳參數搜尋之數學模式 44
3.2.3設計變數 46
3.2.4設計震波 47
3.2.5 PSO-SA混合式最佳化搜尋法之參數設定 47
3.3目標橋梁於不同考量下最佳化設計結果與討論 48
3.3.1黏滯阻尼器阻尼係數最佳化設計結果與討論 48
3.3.2橋墩支承勁度最佳化設計結果與討論 51
3.3.3阻尼係數及橋墩支承勁度最佳化設計結果與討論 53
3.4 不同震波設計之比較 55
3.4.1震波PGA調整至1g後阻尼器設計結果的比較 55
3.4.2震波PGA值調整至1g後橋墩支承設計結果的比較 57
3.4.3橋墩支承勁度及阻尼器阻尼係數最佳設計結果之比較 58
3.4.4震波PGA值調整至1g並改變橋墩位移限制條件,將Case2與Case3重新設計與比較 59
第四章 鋼骨構架阻尼器配置最佳化設計 149
4.1 目標構架與分析方法 149
4.1.1目標構架 149
4.1.2向量式有限元素法(VFIFE) 150
4.2 目標構架之阻尼係數及裝置位置最佳化問題描述 153
4.2.1目標構架最佳參數搜尋之數學模式 153
4.2.2主要變數設定及設計方式 154
4.2.3設計震波 155
4.3 設計結果與討論 156
4.3.1一層一跨抗彎構架的設計結果與討論 156
4.3.2二層一跨抗彎構架阻尼器最佳化設計結果與討論 158
4.3.3三層一跨抗彎構架黏滯阻尼器阻尼係數與位置最佳化設計結果與討論 160
4.4 本章總結 162
第五章 結論與建議 201
5.1 結論 201
5.2 建議 204
參考文獻 206
參考文獻 [1] Agrawal, A.K. and Yang J.N. (1999), “Optimal Placement of Passive Dampers on Seismic and Wind-excited Buildings Using Combinatorial Optimization,” Journal of Intelligent Material Systems and Structures, Vol. 10, pp 997-1014.
[2] AL-Kazemi, B., and Mohan, C. K. (2002), “Multi-Phase Generalization of the Particle Swarm Optimization Algorithm,” Proceedings of the IEEE Congress on Evolutionary Computation, Vol. 1, pp. 489?494.
[3] Aydin, E., Boduroglu, M.H. and Guney, D.(2007), “Optimal Damper Distribution for Seismic Rehabilitation of Planar Building Structures,” Engineering Structures, Vol 29, pp 176-185.
[4] Bishop, J.A. and Striz, A.G. (2004), “On Using Genetic Algorithms for Optimum Damper Placement in Space Trusses,” Struct Multidisc Optim, Vol 28, pp.136-145.
[5] Carlisle, A., and Dozier, G. (2001), “An off-the-shelf PSO,” Proceedings of the Workshop on Particle Swarm Optimization, Vol. 1, pp. 1?6.
[6] Chang, K.C., Lin, Y.Y. and Lai, M.L. (1998), “Seismic Analysis and Design of Structures with Viscoelastic Dampers,” ISET Journal of Earthquake Technology, Paper No.380, Vol. 35, No. 4, pp. 143-166.
[7] Clerc, M. (1999), “The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization,” Proceedings of the Congress on Evolutionary Computation, Vol. 3, pp. 1951-1957.
[8] Eberhart, R.C., and Kennedy, J. (1995), “A New Optimizer Using Particle Swarm Theory,” Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39-43.
[9] Eberhart, R. C., and Shi, Y. (1998), “Comparison Between Genetic Algorithms and Particle Swarm Optimization,” In: Proceedings of the Seventh Annual Conference on Evolutionary Programming, pp. 611?616.
[10] Fourie, P. C., and Groenwold A. A. (2002), “The Particle Swarm Optimization Algorithm in Size and Shape Optimization,” Structural and Multidisciplinary Optimization, Vol. 23, No. 4, pp. 259?267.
[11] Hsu, H.L., Jean, S.Y.(2003), “Improving Seismic Design Efficiency of Petrochemical Facilities”, Practice Periodical on Structural Design and Construction, Vol. 8, No.2 , pp. 107-117
[12] Kawashima, K. and Unjoh, S. (1994) , “Seismic Response Control of Bridges by Variable Dampers,” Journal of Structural Engineering, ASCE, Vol. 120, pp. 2583-2601.
[13] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983), “Optimization by Simulated Annealing,” Science, Vol. 220, No. 4598, pp.671?680.
[14] Kohei, F., Abbas M. and Izuru T.(2010), “Optimal Placement of Viscoelastic Dampers and Supporting Members under Variable Critical Excitations,” Earthquakes and Structures, Vol. 1, No. 1, pp. 43-67.
[15] Lee, T.Y. and Kawashima, K.(2006), “Effectiveness of Seismic Displacement Response Control for Nonlinear Isolated Bridge,” Journal of Structural Mechanics and Earthquake Engineering, JSCE, Vol. 62, pp. 161-175.
[16] Lee, T.Y., Chen, P.C. and Juang, D.S. (2010), “Pole Assignment Using PSO-SA Hybrid Algorithm for Sliding Mode Control on Isolated Bridges with Columns of Irregular Height,” CD-ROM Proceedings of 9th U.S. National and 10th Canadian Conferenceon Earthquake Engineering, Toronto, Canada , July 25-29.
[17] Metropolis, N., Rosenbluth, A. W., Teller, A. H., and Teller, E. (1953), “Equation of State Calculation by Fast Computing Machines,” Journal of Chemical Physics, Vol. 21, No. 6, pp. 1087?1092.
[18] Newmark, N. M. (1959). “A Method of Computation for Structural Dynamics.” Journal of Engineering Mechanics Division, ASCE, 85(3), 97-94.
[19] Ting, E. C., Shih, C. and Wang, Y. K. (2004), "Fundamentals of a Vector Form Intrinsic Finite Element: Part I. Basic Procedure and a Plane Frame Element," Journal of Mechanics, Vol.20, No.2, pp. 113-122.
[20] Ting, E. C., Shih, C. and Wang, Y. K. (2004), "Fundamentals of a Vector Form Intrinsic Finite Element: Part II. Plane Solid Elements," Journal of Mechanics, Vol.20, No.2, pp. 123-132.
[21] Ratnaweera, A., Halgamuge, SK., and Watson, HC. (2004), “Swlf-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients,” IEEE Transactions on Evolutionary Computation, Vol.8, No.3, pp. 240-255.
[22] Shi, Y., and Eberhart, R. C. (1998), “Parameter Selection in Particle Swarm Optimization,” V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben (eds), Lecture Notes in Computer Science, 1447, Evolutionary Programming VII, Springer, Berlin, pp. 591?600.
[23] Shih C., Wang, Y. K. and Ting, E. C. (2004), "Fundamentals of a Vector Form Intrinsic Finite Element: Part III. Convected Material Frames and Examples," Journal of Mechanics, Vol.20, No.2, pp. 133-143.
[24] Wang, L., Li, L. L., and Zheng, D. Z. (2003), “A Class of Effective Search Strategies for Parameter Estimation of Nonlinear Systems,” ACTA Automatica Sinica, Vol. 29, No. 6, pp. 953?958.
[25] Wang,C. Y., Wang, R. Z., Kang, L. C. and Ting, E. C. (2004), "Elastic-Plastic Large Deformation Analysis of 2D Frame Structure," Proceedings of the 21st International Congress of Theoretical and Applied Mechanics (IUTAM), SM1S-10270, Warsaw, Poland, August 15-21.
[26] Wang, J.F., Lin C.C. and Chen B.L. (2003), “Vibration suppression for high-speed railway bridges using tuned mass dampers,” International Journal of Solids and Structures, Vol. 40, pp. 465-491.
[27] Wang, X.Y., Ni, Y.Q., Ko, J.M. and Chen, Z.Q. (2005), “Optimal design of viscous dampers for multi-mode vibration control of bridge cables,” Engineering Structures, Vol. 27, pp. 792-800.
[28] Wu, T. Y., Wang, R. Z. and Wang, C. Y. (2006), "Large Deflection Analysis of Flexible Planar Frames," Journal of the Chinese Institute of Engineers, Vol. 29, No. 4, pp. 593-606.
[29] Xie, X. F., Zhang, W. J., and Yang, Z. L. (2002), “A Dissipative Particle Swarm Optimization,” Proceedings of the IEEE Congress on Evolutionary Computation, Vol. 2, pp. 1456?1461.
[30] Yang, J. N. (1996),“ Overview of protective system ” , Workshop on Application of Various Protective Systems to Bridge and Structure, Taipei, Taiwan, pp.1-86.
[31] Yang, J.N., Lin, S.L. and Agrawal, A.K. (2002), “Optimal Design of Passive Supplemental Dampers Based on H¬∞ and H2 performances,” Earthquake Engineering and Structural Dynamics, Vol. 31, pp 921-936.
[32] 王仁佐、王仲宇、盛若磐(2005),「向量式結構運動分析」,國立中央大學土木工程學研究所博士論文。
[33] 王昱婷(2011),「隅撐抗彎構架之性能設計研究與分析」,碩士論文,國立中央大學土木工程研究所,中壢市。
[34] 李世炳、鄒忠毅(2002),「簡介導引模擬退火法及其應用」,物理雙月刊,第二十四卷,第二期,第307?319頁。
[35] 李宗籌(2010),「具挫屈控制機制之隅撐構架耐震行為研究」,碩士論文,國立中央大學土木工程研究所,中壢市。
[36] 莊清鏘、陳詩宏、王仲宇 (2006),〝向量式有限元於結構被動控制之應用〞,固體與結構之工程計算-2006近代工程計算論壇,第01-025頁。
[37] 莊德興、莊玟珊(2007),”PSO-SA 混和搜尋法與其在結構最佳化設計之應用”,中華民國力學學會第三十一屆全國力學會議,高雄。
[38] 陳柏宏、李姿瑩(2008),「運用向量式有限元素法於隔震橋梁之非線性動力分析」,國立中央大學土木工程學研究所碩士論文。
[39] 汪柏靈、李姿瑩(2009),「橋梁極限破壞分析與耐震性能研究」,國立中央大學土木工程學研究所碩士論文。
指導教授 莊德興(Der-Shin Juang) 審核日期 2012-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明