博碩士論文 993202087 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.216.53.7
姓名 楊金融(Chin-Jung Yang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 整合雷達與光學衛星影像進行三維定位
(Combined Adjustment of Optical and SAR Images for 3D Object Positioning)
相關論文
★ 中華二號衛星影像幾何模擬及方位重建★ 立體航測影像直線與圓弧輪廓建物半自動之三維模型重建
★ 含房屋之中華二號衛星影像幾何模擬及校正★ 空照立體像對中半自動化矩形人工建物重建之研究
★ 近景數化影像半自動式混凝土裂縫量測★ 建築物幾何模塑及其於航照影像正射化之應用
★ EROS A 衛星影像幾何改正之研究★ IKONOS衛星影像正射改正之研究
★ 時間序列之混凝土影像半自動裂縫變遷偵測★ 由EROS A衛星立體對影像產生正射影像及數值地表模型之研究
★ 多重疊航照立體對半自動房屋模型重建★ 結合光達資料與數位空照影像重建三維建物模型
★ 高解析力衛星影像真實正射改正及遮蔽區域補償★ 多航帶推掃式衛星方位平差及影像正射化
★ 結合光達資料與大比例尺向量圖重建三維建物模型★ 空載三線式掃描儀影像立體定位之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 合成孔徑雷達與光學影像是環境遙測之主要資料,整合此兩種感測器資料可獲取更多有用的資訊。本研究從幾何的觀點出發,結合此兩種異質感測器資料,以獲取共軛影像點之三維資訊。使用衛星影像進行三維定位量測的先決條件是建立幾何模式,以連結影像與地面。有理函數模式具有標準化幾何模型的優點,便於描述影像與地面之數學關係,因此本研究使用有理函數模式整合光學與雷達資料進行三維定位。
本研究所提的方法有四個主要處理步驟:(1)建立感測器幾何模型、(2)有理函數轉換係數求解、(3)精化有理函數模式與(4)三維坐標定位。由於大部分的雷達衛星公司及一部分的光學衛星僅提供衛星星曆資料並無提供有理函數轉換模式,此時必須從感測器的幾何模式進而求解有理函數轉換係數;接著以地面控制點精化有理函數模式,使物像空間轉換更加嚴密。最後在光學與雷達影像上量測共軛點,並以有理函數模式建立觀測方程式求解三維坐標。本研究主要有三個實驗分析,(1)雷達衛星影像之模式誤差分析、(2)三維定位精度分析與(3)模擬幾何交會精度。實驗成果顯示整合光學與雷達影像確實可達到三維定位的能力。
摘要(英) Synthetic Aperture Radar (SAR) and optical images are two major data sources in environment remote sensing. The integration of these two datasets can help us to obtain more object information. From geometric point of view, these two types of data may be combined for 3D positioning. Orientation modeling for satellite images is an important task for 3D positioning. To link an image point with its counterpart on the ground, Rational Function Model (RFM) has advantages of standardization for satellite image processing and is easy to implement. Thus, we use RFM to integrate SAR and optical sensor orientation data for 3D positioning.
There are four steps in this study: (1) establishment of geometric model, (2) generation of Rational Polynomial Coefficients (RPCs), (3) RFM refinement, and (4) 3D object positioning. A part of high-resolution optical satellite companies and most SAR satellite image providers only distribute the imagery with ephemeris data. Thus the establishment of geometric model for optical and SAR sensors is the first step. Then, the generation of RPCs for RFM starts from geometric model. Then we employ the ground control points to adjust the RFM for two sensor images. For a pair of conjugate points in SAR and optical images, we have four equations to determine the 3D object coordinates. The experiments include three parts: (1) model error analysis for SAR satellite images, (2) validation for 3D positioning, and (3) geometric simulation. Experimental results showed that the integration of SAR and optical images can achieve 3D object positioning.
關鍵字(中) ★ 光學影像
★ 雷達影像
★ 有理函數模式
★ 幾何套合
★ 三維坐標定位
關鍵字(英) ★ Geometry Integration
★ 3D Positioning
★ Rational Function Model
★ Optical Imagery
★ SAR imagery
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 前言 1
1.1 研究動機與目的 1
1.2 研究方法及內容 7
第二章 有理函數模式三維定位 9
2.1 光學影像幾何模式建立 11
2.2 雷達影像幾何模式建立 12
2.2.1 軌道密合 14
2.2.2 雷達影像反投影 15
2.3 有理函數轉換係數求解 18
2.4 精化有理函數模式 25
2.5 三維定位 28
第三章 實驗成果與分析 30
3.1 實驗資料介紹 30
3.1.1 測試資料一 33
3.1.2 測試資料二 35
3.1.3 測試資料三 37
3.2 實驗成果與分析 39
3.2.1 測試例一 39
3.2.2 測試例二 46
3.2.3 測試例三 52
3.3 模擬幾何交會精度 60
3.4 實驗總結 63
第四章 結論與建議 65
參考文獻 67
參考文獻 張智安、陳良健,2007,有理函數模式於高解析衛星影像幾何改正之應用,航測及遙測學刊,第十二卷,第三期,第257-272頁。
謝嘉聲,2006,“以雷達干涉技術偵測地表變形之研究”,博士論文,國立交通大學土木工程學系。
施學延,2010,“衛星雷達影像反投影定位與有理函數模式”,碩士論文,國立中央大學土木工程學系。
ASI, 2012. http://www.eurimage.com/products/cosmo.html
(last accessed April 11, 2012)
Billingsley, F. C., 1983. Data Processing and Reprocessing, Mannual of Remote Sensing, Volume 1(R.N. Colwell, editor), Second Edition, Sheridan Press: Falls Church, Virginia, pp. 719-722.
Capaldo, P., Crespi, M., Fratarcangeli, F., Nascetti, A., and Pieralice, F., 2012. A radargrammetric orientation model and a RPCs generation tool for COSMO-SkyMed and TerraSAR-X High Resolution SAR, Italian Journal of Remote Sensing, 44(1): 55-67.
Chen, L.C., and Chang, L.Y., 1998. Three dimensional positioning using SPOT stereostrips with sparse control, Journal of Surveying Engineering, ASCE, 124(2):63-72.
Chen, L.C., Teo, T.A., and Liu, C.L, 2006. The Geometrical Comparisons of RSM and RFM for FORMOSAT-2 Satellite Images, Photogrammetric Engineering & Remote Sensing, 69(1):59-68
Curlander, J.C., 1982. Location of space-borne SAR imagery, IEEE Transaction on Geoscience and Remote Sensing, 20(3): 573-579
Digitalglobal, 2012. http://www.digitalglobe.com/ (accessed 11 July, 2012)
Dowman, I., and Dolloff, J., 2000. An evaluation of rational function for photogrammetric restitution, International Archives of Photogrammetric and Remote Sensing, Amsterdam, The Netherland, 16-23 July, 33(B3): 254- 266.
Fraser, C. S., Hanley H. B. and Yamakawa T., 2002. Three-dimensional geopositioning accuracy of Ikonos imagery, Photogrammetric Record, 17(99):465-479
Gelautz, M., Frick, H., Raggam, J., Burgstaller, J., and Leberl, F., 1998. SAR Image Simulation and Analysis of Alpine Tettain, ISPRS Journal of Photogrammetry & Remote Sensing, vol.53 pp.17-38.
Geoeye, 2012. http://www.geoeye.com/CorpSite/
(last accessed April 11, 2012)
Ghilani, C. D., and Wolf, P. R., 2008. ELEMENTARY SURVEYING An Introduction to Geomatics, 12th Edition, Prentice Hall, New Jersey, pp. 331.
Grodecki, J., and Dial, G., 2003. Block adjustment of high-resolution satellite image described by rational function, Photogrammetric Engineering & Remote Sensing, 69(1):59-68.
Gugan, D. J., and Dowman, I. J., 1988. Accuracy and completeness of topographic mapping from SPOT imagery. Photogrammetric Record, 12(72), 787-796
JAXA, 2012. http://www.jaxa.jp/projects/sat/alos/index_e.html
(last accessed April 11, 2012)
Konecny, G., and Schuhr, W., 1988. Reliability of RADAR image data, Proceedings of the 16th ISPRS Congress, Commission 3.
Leberl, F., 1978. Radargrammetry for imageinterpretation, ITC Technical Report.
Leberl, F. W., Domik, G., Raggam. J., and Kobrick, M., 1986a. Radar stereo mapping techniques and application to SIR-B. IEEE Transaction on Geosciences & Remote Sensing, 24(4): 473-481
Leberl, F. W., Domik, G., Raggam. J., Cimino, J., and Kobrick, M., 1986b. Multiple incidence angle SIR-B experiment over Argentina: stereo-radargrammetric analysis. IEEE Transaction on Geosciences & Remote Sensing, 24(4): 482-491
Maitre, H., 2008. Processing of synthetic aperture radar images, ISTE Ltd and John Wiley & Sons Inc.
Mayumi, N., Fraser, C. S., Takayuki, N., Takahiro, and S., Shoichi, O., 2004. Accuracy assessment of QuickBird stereo imagery, Photogrammetric Record, 19(106):128-137.
Meric, S., Fayard, F., and Pottier, E., 2009. Radargrammetric SAR image processing, InTechOpen book, pp. 421-454.
Mikhail, E.M., and Bethel, J.S., 2001. Introduction to modern photogrammetry, John wiley and Sons, New York, pp.446-454.
Neumaier, A., 1998. Solving ill-conditioned and singular linear system, SIAM Review, 40(3): 636- 666.
OGC, 2000. The Compendium of Controlled Extensions for the National Imagery Transmission Format, STDI- 0002, Version 2.1, November 16.
SPOT, 2012. http://www.astrium-geo.com/en/143-spot-satellite-imagery
(last accessed April 11, 2012)
Tao, C.V. and Hu, Y., 2001. A comprehensive study of the rational function model for photogrammetric processing, Photogrammetric Engineering & Remote Sensing, 67(12): 1347–1357.
Tao, C.V. and Hu, Y., 2002. 3D Reconstruction methods based on the rational function model, Photogrammetric Engineering & Remote Sensing, 68(7): 705-714.
Toutin, Th., 1995. Multi-source data fusion with an integrated and unified geometric modeling, EARSeL Advances in Remote Sensing, 4(2): 118-129.
Toutin, Th., 1998. Evaluation de la precision geometrique des images de RADARSAT, Journal Canadien de Teledetection, 24(1): 80–88.
Toutin, Th., Chenier, R. and Carbonneau, Y., 2002. 3D models for high resolution images: examples with QuickBird, IKONOS and EROS, International Archives of Photogrammetry and Remote Sensing, 34(4): 547-551.
Toutin, Th., 2003a. Block Bundle Adjustment of IKONOS In-Track Image, International Journal of Remote Sensing, 24(4): 851-857.
Toutin, Th., 2003b. Path Processing and Block Adjustment with RADARSAT-1 SAR Images, IEEE Transactions On Geoscience And Remote Sensing, 41(10):2320-2328.
Toutin, Th., 2004. Review article: geometric processing of remote sensing images: models algorithms and methods, International Journal of Remote Sensing, 25(10): 1893-1924.
Westin, T., 1990. Precision rectification of SPOT imagery, Photogrammetric Engineering & Remote Sensing, 56(2): 247-253.
Wong, K.W., 1975. Geometric and cartographic accuracy of ERTS-1 imagery, Photogrammetric Engineering & Remote Sensing, 41(6): 621-635
Zebker, H.A. and Goldstein, R.M., 1986. Topographic mapping from interferometry synthetic aperture radar observations. Journal of Geophysical Research, 91, 4993-4999.
Zhang, G., Fei, W.B., Li, Z., Zhu, X., and Li, D.R., 2010. Evaluation of the RPC Model for Spaceborne SAR Imagery, Photogrammetric Engineering & Remote Sensing, 76(6): 727-733.
指導教授 陳良健(Liang-Chien Chen) 審核日期 2012-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明