博碩士論文 100322082 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.226.248.88
姓名 高惠欣(Hui-Hsin Kao)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 多重影像匹配結合光譜與紋理資訊偵測房屋區塊
(Building Detection by Multiple Image Matching with Spectrum and Texture Analysis)
相關論文
★ 中華二號衛星影像幾何模擬及方位重建★ 立體航測影像直線與圓弧輪廓建物半自動之三維模型重建
★ 含房屋之中華二號衛星影像幾何模擬及校正★ 空照立體像對中半自動化矩形人工建物重建之研究
★ 近景數化影像半自動式混凝土裂縫量測★ 建築物幾何模塑及其於航照影像正射化之應用
★ EROS A 衛星影像幾何改正之研究★ IKONOS衛星影像正射改正之研究
★ 時間序列之混凝土影像半自動裂縫變遷偵測★ 由EROS A衛星立體對影像產生正射影像及數值地表模型之研究
★ 多重疊航照立體對半自動房屋模型重建★ 結合光達資料與數位空照影像重建三維建物模型
★ 高解析力衛星影像真實正射改正及遮蔽區域補償★ 多航帶推掃式衛星方位平差及影像正射化
★ 結合光達資料與大比例尺向量圖重建三維建物模型★ 空載三線式掃描儀影像立體定位之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 房屋區塊偵測為重建房屋模型與變遷偵測前之重要工作,最常見的資料來源之一為航照影像。航照影像可提供幾何、光譜與紋理資訊來達成偵測房屋區塊之目的。本研究利用高重疊數位航照影像,進行房屋區塊偵測,處理重點分為幾何分析、光譜分析、紋理分析與房屋區塊偵測四部分。幾何分析之主要工作為特徵主軸分析與多重影像匹配;光譜分析是藉由常態化差異植生指標(NDVI)或綠指標(GI)來分辨植生區;紋理分析是利用灰階共生矩陣(GLCM)中之角度二次矩法(ASM)來找尋均質區;最後,將幾何、光譜與紋理資訊整合,並利用最大相似法(ML)、Dempster-Shafer(DS)及支持向量機(SVM)三種不同的分類法,配合少量訓練資料以達到房屋區塊偵測之目的。
實驗成果顯示,多重影像匹配中特徵主軸配合提出的多視窗匹配方法,可有效提升匹配成功率與正確率。將房屋區塊偵測成果與參考資料相比,以像元為基礎之分類精度可達到80%且Kappa精度指標高於0.7;若以區域為基礎,由參考資料與成果套疊來看,皆可成功偵測到參考資料中房屋區之位置。
摘要(英) Building detection is important in building reconstruction and change detection. The major information contents in building detection are shape, spectrum and textual when images are employed. This study uses highly overlapped aerial images to perform building detection. Geometry analysis, spectrum analysis, textual analysis and classifications are the important parts in this study. Geometry analysis includes two major works, which are multiple image matching and multiple feature direction analysis. On the other hand, the Normalized Difference Vegetation Index (NDVI) or Greenness Index (GI) is used to separate vegetation from buildings. Besides, textual information can find the homogeneity area using Angular Second Moment (ASM) based on Gray Level Co-occurrence Matrix (GLCM). Final, we employ Maximum Likelihood (ML), Dempster-Shafer (DS) and Support Vector Machines (SVM) to perform classification using integrated data sets.
The results show that multiple image matching with feature direction analysis and the proposed matching strategy can improve the matching successful rate accuracy. Compared with reference data, the accuracy are higher than 80%, and Kappa index value about 0.7 in pixel-based validation. For region-based, the building regions of all the tests data with three different classifiers are detected successfully.
關鍵字(中) ★ 特徵主軸分析
★ 房屋區塊偵測
★ 多重影像匹配
關鍵字(英) ★ Feature direction analysis
★ Multiple image matching
★ Building detection
論文目次 摘要 I
Abstract II
致謝 III
圖目錄 VIII
表目錄 XII
第一章 前言 1
1.1 研究動機與目的 1
1.2 文獻回顧 3
1.3 研究流程 10
1.3.1. 資料前處理 11
1.3.2. 幾何分析 11
1.3.3. 影像正射化 12
1.3.4. 光譜分析 12
1.3.5. 紋理分析 12
1.3.6. 偵測房屋區塊 13
1.3.7. 房屋區成果評估 13
第二章 研究方法 14
2.1 工作區選取 15
2.2 線型結構萃取 16
2.3 特徵主軸分析 16
2.3.1.主軸方向分析 17
2.3.2. 特徵點群分組 18
2.4 多重影像匹配 19
2.4.1. 匹配高度範圍預估 19
2.4.2. 整合式匹配 20
2.4.3. 多視窗匹配 22
2.4.4. 旋轉視窗 24
2.5 建立數值地表模型 26
2.6 影像正射化 26
2.7 高度分區 28
2.8 光譜分析 28
2.9 紋理分析 30
2.10分類 33
2.10.1. ML分類法 34
2.10.2. DS分類法 35
2.10.3. SVM分類法 37
第三章 研究成果與分析 39
3.1 實驗資料 39
3.2 測試例資料 43
3.3 參考資料 45
3.4 實驗成果 47
3.4.1. 研究使用參數 47
3.4.2. 線特徵萃取與主軸方向 48
3.4.3. 多重影像匹配成果 51
3.4.4. 數值地表模型 53
3.4.5. 正射影像 55
3.4.6. 高度分區成果 57
3.4.7. 光譜分析成果 59
3.4.8. 紋理分析成果 61
3.4.9. 房屋偵測成果 63
3.5 成果分析 68
3.5.1. 匹配視窗大小對相關係數之影響 68
3.5.2. 多主軸與多視窗匹配之貢獻 69
3.5.3. 匹配成功率及正確率分析 73
3.5.4. 房屋區成果評估 78
3.5.5. 紋理資訊於房屋區塊偵測之貢獻 83
3.6 實驗成果扼述 86
第四章 結論與建議 88
參考文獻 ................................................................................................... 91
參考文獻 張劍清,張祖勛,徐芳,朱英浩,1998,城市大比例尺影像三維景觀重建,武漢測繪科技大學學報,23(4):355-358.
徐偉城,1999,空照彩色立體像對中人工建築物萃取之研究,碩士論文,國立中央大學土木工程研究所。
黃佑祥,2010,多重影像匹配於房屋模型重建,碩士論文,國立中央大學土木工程研究所。
Baillard, C., and Zisserman, A., 2000. A plane sweep strategy for the 3Dreconstruction of buildings from multiple images, International Archives of Photogrammetry and Remote Sensing, 33(B3): 56-62.
Baraldi, A., and Parmiggiani, F., 1995. An Investigation of the Textural Characteristics Associated with Gray-level Co-occurrence matrix statistical parameters, IEEE Trans. On Geoscience and Remote Sensing, 33(2): 293-304.
Briese, C., Pfeifer, N. and Dorninger, P., 2002, Application of the Robust Interpolation for DTM Determination, IAPRS, Graz, Austria, 33: 55-61.
Canny, J., 1986, A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8, pp. 679-698.
Conners, R. W., and Harlow, C. A., 1980. A Theoretical Comparison of Texture Algorithms, IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI-2(3): 204-222.
Du Buf, J. M. H., Kardan, M., and Spann, M., 1990. Texture Feature Performance for Image Segmentation, Patern Recognition, 23: 291-309.
Duda, R.O., Hart, P.E. and Stork, D.G., 2001. Pattern classification, 2 nd ed. Wiley, New York.
Flusser, J., 1992. Invariant Shape Matrix Description and Measure of Object Similarity. Proceedings of 4th IEE International Conference of Image Processing and its Applications, Maastricht, The Netherlands, pp. 139-142.
Gonzalez, R. C., and Woods, R. E., 2002. Digital Image Processing, 2nd Edition, Prentice Hall, New Jersey, pp.665
Gordon, J and Shortliffe, E H. (1984) “The Dempster-Shafer theory of evidence.” In: B G Buchanan and E H Shortliffe (eds.).Rule-based Expert Systems: the MYCIN Experiments of the Stanford Heuristic Programming Project, 272-292.
Haralick, R. M., Shanmugan, K., and Dinstein, I., 1973, “Texture Features for Image Classification”, IEEE Trans. Sys. Man Cyber, Vol. 3, No. 6, pp.610-621.
Hough, P.V.C., 1959, Machine Analysis of Bubble Chamber Pictures. Proc. Int. Conf. High Energy Accelerators and Instrumentation.
Jin, X., and Davis, C. H., 2005. Automated Building Extraction from High-Resolution Satellite Imagery in Urban Areas Using Structural, Contextual, and Spectral Information, EURASIP Journal on Applied Signal Processing, Vol. 14, pp.2196-2206.
Jobanputra, R., and Clausi, D. A., 2006. Preserving Boundaries for Image Texture Segmentation Using Grey Level Co-occurence Probabilities, Patern Recognition, 39: 234-245.
Khoshelham, K., Nardinocchi, C., Frontoni, E., Mancini, A., and Zingaretti, P., 2010. Performance evaluation of automated approaches to building detection in multi-source aerial data. ISPRS Journal of Photogrammetry and Remote Sensing, pp.123-133.
Kim T., Shin, D., and Lee, Y. R., 2001. Development of robust algorithm for transformation of a 3D object point onto a 2D image point for linear pushbroom imagery, Photogrammetric Engineering and Remote Sensing, 67(4): 449-452.
Lillesand, T., and Kiefer, R., 2000. Remote Sensing And Image Interpretation, 4th edition, John Wiley and Sons, Inc., ISBN 0471255157. Page 448.
Lim, H. S., MatJafri, M. Z., and Abdullah, K., 2003. Evaluation of conventional digital camera scenes for thematic information extraction. School of Physics University Saints Malaysia.
Lowe, D.G. 1999. Object recognition from local scale-invariant features. In International Conference on Computer Vision, Corfu, Greece, pp. 1150–1157.
Mass, H. G., 2002. Methods for measuring height and planimetry discrepanciesin airborne laserscanner data. Photogrammetric Engineering and RemoteSensing, Vol. 68, No. 9, pp. 993-940.
Noronha, S., and Nevatia, R., 2001. Detection and modeling of buildings from multiple aerial images, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No. 5, pp. 501-518.
Otto, G.P., Chau, T.K.W., 1989. A region-growing algorithm for matching of terrain images. Image and Vision Computing 7 (2), 83–94.
Rottensteiner, F., and Briese, C., 2002. A New Method For Extraction In Urban Areas From High-Resolution LIDAR Data, ISPRS, vol. XXXIII, pp. 295-301, Graz, Austria.
Rottensteiner, F., and Briese, C., 2003. Automatic Generation of Building Models from LiDAR Data and the Integration of Aerial Images, International Archives of Photogrammetry and Remote Sensing, Vol. 34, Part3/W13, pp. 298-303.
Suveg, I., and Vosselman, G., 2004. Reconstruction of 3D building models from aerial images and maps, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 58, pp. 202-224.
Vogtle, T., and Steinle, E., 2000, 3D modeling of building using laser scanner and spectral information, International Archives of Photogrammetry and Remote Sensing, 33(B3):927-934
Vapnik, V. N., 1995. The nature of statistical learning theory, Springer Verlag, Berlin Heidelberg, New York.
Weszka, J. S., Dyer, C. R., and Rosenfeld, A., 1976. A Comparative Study of Texture Measures for Terrain Classification, IEEE Trans. Sys. Man Cyber, SMC-6(4): 269-285.
指導教授 陳良健(Liang-Chien Chen) 審核日期 2012-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明