博碩士論文 993202106 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:144 、訪客IP:3.140.185.123
姓名 黃昱崴(Yu-wei Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 低放射性廢棄物處置用障壁混凝土受硫酸鹽侵蝕之劣化及預估研究
(Low-level radioactive waste disposal with the barrier of concrete by sulfate attack deterioration and estimate research)
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 低放射性廢棄物處置場障壁主體由混凝土構成,然而台灣地區多雨且四面臨海,因此處置場易因海水、地下水、酸雨以及乾濕循環的作用而造成障壁混凝土材料遭受硫酸鹽侵蝕劣化,若處置場在此種服務環境下,可能對障壁混凝土造成損害或劣化而影響其耐久性。
本研究針對低放射性廢棄物處置場工程障壁所使用之混凝土材料,以實驗室模擬混凝土材料長期受硫酸鹽侵蝕作用下,探討障壁混凝土材料長期在此環境下的行為,分析其可能劣化機制及對耐久性之影響。試驗結果得知: (1)混凝土受硫酸鹽侵蝕時,其入侵之深度及濃度皆隨著歷時時間增加而增加;(2)以卜作嵐材料取代部分水泥及降低水膠比,可提升混凝土緻密性進而改善抗硫酸鹽侵蝕能力;(3)將試驗結果依據費克第二定律(Fick’s second law)加以擬合可推估硫酸根離子擴散係數及邊界濃度,藉以評估卜作嵐材料取代水泥之影響;(4)最後再以擴散係數以及現地硫酸根離子濃度來推估混凝土劣化情形。
摘要(英) The proposed engineered barrier for low-level radioactive wastes disposal site is made of concrete. Since Taiwan is surrounded by the sea, the low-level radioactive wastes disposal site is very possible to suffer from the attack of different elements of the environment, such as sea water, ground water, acid rain, wet-dry cycle, and sulfate attack.
The attack by sulfate on concrete material used at the low-level radioactive wastes disposal site was simulated in the laboratory to determine the long-term durability of concrete material. The possible degradation mechanism of concrete under sulfate attack and the influence on its durability are carefully examined in this study. The results of the laboratory works show that: (1) the depth of sulfate penetration increases with elapsed time of sulfate attack; (2) the replacement of a portion of Portland cement with pozzolanic materials and use of low w/b were found to help the concrete to resist the sulfate attack; (3) the diffusion coefficient can be determined from the sulfate profile experimental result according to Fick’s second law, such that the effect of replacement of a portion of Portland cement with pozzlanic materials can be assessed; (4) Finally, estimate the diffusion coefficient of concrete deterioration.
關鍵字(中) ★ 障壁混凝土
★ 擴散係數
★ 硫酸鹽侵蝕
關鍵字(英) ★ sulfate attack
★ concrete barrier
★ diffusivity
論文目次 目錄 i
圖目錄 iii
表目錄 v
第一章 緒論 1
1.1研究動機 1
1.2研究目的 2
1.3研究內容 3
第二章 文獻回顧 5
2.1低放射性廢棄物 5
2.1.1低放射性廢棄物來源 5
2.1.2低放射性廢棄物處置設施 5
2.1.3低放射性廢棄物處置場之環境侵蝕 11
2.2 混凝土耐久性 12
2.2.1混凝土耐久性定義 12
2.2.2物理侵蝕 12
2.2.3化學侵蝕 14
2.3 硫酸鹽侵蝕 16
2.3.1 硫酸鹽侵蝕機理 17
2.3.2 硫酸鎂的侵蝕 21
2.3.3 影響硫酸鹽侵蝕的因素 22
2.3.4 混凝土試體受硫酸鹽侵蝕開裂過程 30
2.4碳硫矽鈣石型硫酸鹽侵蝕 31
2.4.1 碳硫矽鈣石結構特徵 32
2.4.2 碳硫矽鈣石產生因素 33
2.4.3 碳硫矽鈣石產生預防措施 37
2.5 混凝土的劣化 37
第三章 實驗計畫 41
3.1 實驗材料 41
3.2 主要實驗設備 47
3.3 實驗內容及方法 49
3.3.1 實驗流程 49
3.3.2 實驗變數 51
3.3.3 實驗方法 57
第四章 結果與討論 59
4.1 硫酸鹽侵蝕濃度剖面 59
4.1.1不同混凝土配比在歷時時間下之濃度剖面 59
4.1.2混凝土配比在不同歷時時間下之濃度剖面 67
4.1.3濃度剖面推估擴散係數 74
4.2 實驗數值與信賴度分析 84
4.3 硫酸鹽侵蝕預估 93
4.4 硫酸鹽侵蝕試驗 97
第五章 結論與建議 102
5.1 結論 102
5.2 建議 103
參考文獻 105
附錄 113
參考文獻 行政院原子委員會放射性物料管理局,http://fcma.aec.gov.tw (2005)。
梁正儀,1990,「高強度水泥砂漿受硫酸鹽侵蝕問題之研究」,碩士論文,國立成功學土木工程研究所,台南。
陳柏忠,2005,「用過核子燃料乾式貯存設施之混凝土材料耐久性研究」,碩士論文,國立中央大學土木工程研究所,中壢。
陳彥任,1993,「爐石取代水泥及添加石膏對抗硫酸鹽侵蝕能力影響之研究」,碩士論文,國立中央大學土木工程研究所,中壢。
陳仕豪,2010,「氯離子入侵混凝土之擴散係數時間效應與飛灰之影響」,碩士論文,國立中央大學土木工程研究所,中壢。
黃兆龍,1999,「混凝土性質及行為」,詹氏書局。
黃兆龍,2003,「高性能混凝土理論與實務」,詹氏書局。
潘致遠,1999,「添加矽灰及爐石對水泥薄漿工程性質之影響研究」,碩士論文,國立中央大學土木工程研究所,中壢。
歐俊顯,2001,「硫酸鹽溶液加速評估混凝土耐久性」,碩士論文,國立成功大學土木工程研究所,台南。
吳清哲,2006,「低放射性廢棄物處置場障壁受硫酸鹽侵蝕之劣化模式評估」,碩士論文,國立中央大學土木工程研究所,中壢。
鄒蕙如,2005,「最終處置場黏土障壁材料之傳輸行為研究」,碩士論文,國立中央大學土木工程研究所,中壢。
邱耀輝,2011,「硫酸鹽侵蝕對低放處置場障壁混凝土之劣化及推估研究」,碩士論文,國立中央大學土木工程研究所,中壢。
李 釗,1993,「添加石膏對爐石水泥抵抗硫酸鹽侵蝕能力影響之微觀研究」,國科會專題研究計畫成果報告。
Akoz, F., Turker, F., Koral, S., and Yuzer, N. (1999), “Effects of raised temperature of sulfate solutions on the sulfate resistance of mortars with and without silica fume.” Cement and Concrete Research, Vol. 29, pp. 537-544
Aguilera, J., Martinez-Ramirez, S., Pajares-Colomo, I., Blanco-Varela, M. T., (2003), “Formation of thaumasite in carbonated mortars.” Cement and Concrete Composites, Vol. 25, pp. 991-996.
A1-Dulaijan, S. U., Maslehuddin, M., A1-Zahrani, M. M., Sharif, A. M., Shameem, M., and Ibrahim, M. (2003), “Sulfate resistance of plain and blended cements exposed varving concentrations of sodium sulfate.” Cement and Concrete Composites, Vol. 25, pp. 429-437.
Al-Amoudi, O. B. (2002), “Attack on plain and blended cements exposed to aggressive sulfate environments.” Cement and Concrete Composites, Vol. 24, pp. 305-316.
Atkinson, A., D. j. Goult, and J. A. Hearne. (1984), “An Assessment of the Long-Term Durability of Concrete in Radioactive Waste Repositories” , AERE-R11465, Harwell, U.K.
Atkinson, A. and J. A. Hearne. (1990), “Mechanistic Model for the Durability of concrete Barriers Exposed to Sulphate-Bearing Groundwaters,” Materials Research Society, 176, p.149-156.
Boyda, A. J., Mindess, S. (2003), “The use of tension testing to investigate the effect of W/C ratio and cement type on the resistance of concrete to sulfate attack.” Cement and Concrete Research, Vol. 34, pp. 373-377.
Brown, P., Hooton, R. D. (2002), “Ettringite and thaumasite formation in laboratory concretes prepared using sulfate-resisting cements,” Cement and Concrete Composites, Vol. 24, pp. 361-370.
Brown, P. W. (2002), “Thaumasite formation and other forms of sulfate attack.” Cement and Concrete Composites, Vol. 24, pp.301-303.
Cao, H. T., Bucea, L., Ray, A., Yozghatlian, S. (1997), “The effect of cement combosition and PH of environm ent on sulfate resistance of Portland cements and blended cements.” Cement and Concrete Composites, Vol. 19, pp. 161-171.
Chatterji, S. (1995), “On the applicability of Fick’’s second law to chloride ion migration through Portland cement concrete.” Cement and Concrete Research, Vol. 25, No. 2, pp. 299-303.
Diamond, S. (1996), “Delayed ettringite formation - processes and problems,” Cement and Concrete Composites, Vol. 18, No. 3, pp. 205-215.
Drimalas, T., Clement, J. C., and Folliard, K. J. (2010), “Laboratory and Field Evaluations of External Sulfate Attack in Concrete,” The University of Texas at Austin.
Ferraris, C.F., J.R. Clifton, P.E. Stutzman and E.J. Garboczi. (1997), “Mechanisms of degration of Portland cement-based systems by sulfate attack.” Mechanisms of chemical degradation of cement-based systems. Ed. K.L. Scrivener and J.F.Young. London ; New York : E & FN Spon,. 185-192
Haj-Ali, R. M., Kurtis, K. E., and Sthapit, A. R. (2001). “Neural Network Modeling of Concrete Expansion during Long-Term Sulfate Exposure.” ACI Materials Journal, Vol. 98 No. 5, Jan.- Feb. pp. 36-43.
Hanadi, S. R., Philip, B. B., and Charles, J. N. (1999), Ground Water Contamination : Trasport and Remediation, Prentice-Hall, Inc., Upper Saddle River, New Jersey, U.S.A.
Hartshorn, S. A., Sharp, J. H., and Swamy, R. N. (2002), “The thaumasite form of sulfate attack in Portland-limestone cement mortars stored in magnesium sulfate solution.” Cement and Concrete Composites, Vol. 24, pp. 351-359.
Higgins, D. D., Crammond, N. J. (2003), “Resistance of concrete containing ggbs to the thaumasite form of sulfate attack.” Cement and Concrete Composites, Vol. 25, pp. 921-929.
Hoglund, L. O. (1992), “Some notes on ettringite formation in cementitious materials - influence of hydration and thermodynamic constraints for durability.” Cement and Concrete Research, Vol. 22, No. 2-3, pp. 217-228.
Irassar, E. F., Maio, A. D., and Batic, O. R. (1996), “Sulfate attack on concrete with mineral admixtures.” Cement and Concrete Research, Vol. 26, No. 1, pp. 113-123.
Kurtis, K. E., Monteiro, P. J., and Madanat, S. (2000), “Empirical Models to Concrete Expansion Caused by Sulfate Attack. ” ACI Materials Journal, Vol. 97, No. 2, Mar.- Apr. pp. 156-161.
Irassar, E. F., Bonavetti, V.L., Gonzalez, M. (2003), “Microstructural study of sulfate attack on ordinary and limestone Portland cements at ambient temperature.” Cement and Concrete Research, Vol. 33, pp. 31-41.
Lagerblad B., J.Marchand and J.P. Skalny. (1999), “Long term test of concrete resistance against sulphate attack.” Materials Science of concrete : Sulfate attack Mechanisms,. American Ceramic Society, Westerbrook, Ohio: 325-336 ,.
Lee, S. T., Moon, H. Y., and Swamy, R. N. (2005), “Sulfate attack and role of silica fume in resisting strength loss.” Cement and Concrete Composites, Vol. 27, pp. 65-76.
Mbessa, M., Pe’ra, J. (2001), “Durability of high-strength concrete in ammonium sulfate solution.” Cement and Concrete Research, Vol. 31, pp. 1227-1231.
Mehta, P. K. (1986), Concrete Structure Properties and Materials, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A.
Monteiroa, P. J. M., Kurtis, K. E. (2003), “Time to failure for concrete exposed to severe sulfate attack.” Cement and Concrete Research, Vol. 33, pp. 1159-1163.
Mulenga, D. M., Stark, J., and Nobst, P. (2003), “Thaumasite formation in concrete and mortars containing fly ash.” Cement and Concrete Composites, Vol. 25, No. 8, pp. 907-912.
Park, Y. S., Suh, J. K., Lee, J. H., and Shin, Y. S. (1999), “Strength deterioration of high strength concrete in sulfate environment.” Cement and Concrete Research, Vol. 29, pp. 1397-1402.
Romer, M. (2003), “Steam locomotive soot and the formation of thaumasite in shotcrete,” Cement and Concrete Composites, Vol. 25, pp. 1173-1176.
Sahu, S., Badger, S., Thaulow, N., (2003), “Mechanism of thaumasite formation in concrete slabs on grade in Southern California.” Cement and Concrete Composites, Vol. 25, pp. 889-897.
Santhanama, M., Cohenb, M. D., Olekb, J. (2003), “Effects of gypsum formation on the performance of cement mortars during external sulfate attack.” Cement and Concrete Research, Vol. 33, pp. 325-332.
Santhanam, M., Cohen, M. D., and Olek, J. (2002), “Modeling the effects of solution temperature and concentration during sulfate attack on cement mortars.” Cement and Concrete Research, Vol. 32, pp. 585-592.
Santhanam, M., Cohen, M. D., and Olek, J. (2002), “Mechanism of sulfate attack: A fresh look Part 1: Summary of experimental results. Proposed mechanisms.” Cement and Concrete Composites, Vol. 32, pp. 915-921.
Santhanam, M., Cohen, M. D., and Olek, J. (2002), “Mechanism of sulfate attack: a fresh look Part 2. Proposed mechanisms.” Cement and Concrete Composites, Vol. 33, pp. 341-346.
Sarkar, S., Mahadevan, S., Meeussen, J.C.L., van der Sloot, H., Koaaon, D. S. (2010), “Numerical simulation of cementitious materials degradation under external sulfate attack.” Cement and Concrete Composites, Vol. 32, pp. 241-252.
Shuman, R., Rogers, V. C. and Shaw, R. A. (1989), “The Barrier Code for Predicting Long-Term Concrete Performance.” Waste Management 89, University of Arizona.
Sims, I., Huntley, S. A. (2004), “The thaumasite form of sulfate attack-breaking the rules.” Cement and Concrete Composites, Vol. 26, pp. 837-844.
Smallwood, I., Wild, S., and Morgan, E. (2003), “The resistance of metakaolin (MK)-Portland cement (PC) concrete to the thaumasite-type of sulfate attack (TSA)-Programme of research and preliminary results.” Cement and Concrete Composites, Vol. 25, pp. 931-938.
Tian, B., Cohen, M. D. (2000), “Does gypsum formation during sulfate attack on concrete lead to expansion ?.” Cement and Concrete Research, Vol. 30, pp. 117-123.
Tsivilis, S., Kakali, G., Skaropoulou, A., Sharp, J. H., and Swamy, R. N. (2003), “Use of mineral admixtures to prevent thaumasite formation in limestone cement mortar.” Cement and Concrete Composites, Vol. 25, pp. 969-976.
Tixier, R. (2000), ‘‘Microstructural development and sulfate attack modeling in blended cement-based materials.’’ PhD dissertation, Arizona State University, Tempe, Ariz.
Tixier, R., Mobasher, B. (2003), “Modeling of Damage in Cement-Based Materials Subjected to External Sulfate Attack. I: Formulation.” ASCE Journal of Materials Engineering, Vol. 15, No. 4, pp. 305-313.
Tixier, R., Mobasher, B. (2003), “Modeling of Damage in Cement-Based Materials Subjected to External Sulfate Attack. II: Comparison with Experiments.” ASCE Journal of Materials Engineering, Vol. 15, No. 4, pp. 314-322.
Torres, S. M., Sharp, J. H., Swamy, R. N., Lynsdale, C. J., and Huntley, S. A. (2003), “Long term durability of Portland-limestone cement mortars exposed to magnesium sulfate attack,” Cement and Concrete Composites, Vol. 25, pp. 947-954.
Torii, K., Taniguchi, K., and Kawamura, M. (1995), “Sulfate resistance of high ash content concrete.” Cement and Concrete Research, Vol. 25 , pp. 759-768.
Tumidajski, P. J., Chan, G. W., and Philipose, K. E. (1995), “An effective diffusivity for sulfate transport into concrete.” Cement and Concrete Research, Vol. 25, No. 6, pp. 1159-1163.
Young, J. F., Mindess, S., and Darwin, D. (2002), Concrete, Prentice-Hall, Inc., Upper Saddle River, New Jersey, U.S.A.
指導教授 黃偉慶(Wei-Hsing Huang) 審核日期 2012-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明