摘要(英) |
In the recent years, the rainfall intensity rises sharply in Taiwan due to global climate variations, and it may result in the situations such as increased flooding and droughts, the reservoir storage volume is insufficient, and it causes the management and the distribution of water resources more and more difficult in the future. This study discussed the influence of floods and drought under climate change, and analyzed rainfall by the Mann-Kendall method for the trends in year 1961-1990 and that in 1991-2010.
First, this study analyzed 50 years long-term rainfall data to discuss the change of trend, and to calculate the total rainfall and the rainfall patterns in spatial. Second, this study analyzed the return period of the single day maximum rainfall and the maximum continuance days without rainfall by frequency analysis in year 1961-1990 and 1991-2010. Last, this study discussed the effect of the extreme rainfall and the drought under climate change in Taiwan.
According to the analysis result of Mann-Kendall method, there was an obvious trend appeared in the alternate drying and wetting month. The average annual rainfall showed an increasing trend in both central and southern Taiwan. Analyzing average annual rainfall and average amount of water by the Kriging method, the rainfall patterns had changed in spatial in northern Taiwan. The average annual rainfall decreased between the elevation of 200 meter above sea and that of 1000 meter above sea, and the average annual rainfall increased for the elevation above 1000 meter. In central and southern Taiwan, the average annual rainfall increased for region above the elevation of reservoir sites. In addition, the frequency analysis result showed that the rainfall intensity increased sharply in the central and south area under climate change. Extreme rainfall had changed the return period, i.e., more sever rainfall is expected in 1991-2010 than that in 1961-1990. In Central and Southern Taiwan, the range of small-scale and large-scale drought would spread gradually to inland in 1991-2010. During this period, the probability of large-scale drought occurring is 0.02 in the central and south area along the coast, while the probability is less than 0.01 in Northern Taiwan.
|
參考文獻 |
1.Benjamin, L. H., and M. A. Saunders, “A Drought Climatology for Europe.”, International Journal of Climatology, 22(13), pp. 1571-1592, 2002.
2.Boni, G., A. Parodi, R. Rudari, “Extreme rainfall events: Learning from raingauge time series.”, Journal of Hydrology, 327, pp. 304-314, 2006.
3.Burn, D. H., and Mohamed A. Hag Elnur, “Detection of hydrologic trends and variability.”, Journal of Hydrology, 255, pp. 107-122, 2002.
4.Cannarozzo, M., L. V. Noto, F. Viola, “Spatial distribution of rainfall trends in Sicily (1921-2000).”, Physics and Chemistry of the Earth, 31, pp. 1201-1211, 2006.
5.Guillermo, Q., Tabios III, J. D. Salas, “A comparative analysis of techniques for spatial interpolation of precipitation.”, Journal of the American Water Resources Association, 21(3), pp. 365-380, 1985.
6.Goovaerts, P., “Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall.”, Journal of Hydrology, 228, pp. 113–129, 2000.
7.IPCC, “Climate Change 2007:Synthesis Report.”, 2007.
8.Leonard, M., A. Metcalfe, M. Lambert, “Frequency analysis of rainfall and streamflow extremes accounting for seasonal and climatic partitions.”, Journal of Hydrology, 348, pp. 135-147, 2008.
9.Muzik, I., “A first-order analysis of the climate change effect on flood frequencies in a subalpine watershed by means of a hydrological rainfall–runoff model.”, Journal of Hydrology, 267, pp. 65-73, 2002.
10.Tung, C. P. and D. A. Haith, “Global Warming Effects on New York Streamflows.”, Journal of Water Resources Planning and Management, 121, pp. 216-225, 1995.
11.Villarini, G., J. A. Smith, M. L. Baeck, R. Vitolo, D. B. Stephenson, W. F. Krajewski, “On the frequency of heavy rainfall for the Midwest of the United States.”, Journal of Hydrology, 400, pp. 103-120, 2011.
12.王如意、易任,「應用水文學(上、下)」,國立編譯館,1986。
13.王如意、李如晃,「颱風逐時區域平均雨量最佳化估計之研究」,農業工程學報,第39卷第3期,13-30頁,1993。
14.王如意、何輔仁、謝平城,「以克利金法應用於坡地集水區水文分析之研究」,行政院農業委員會研究計畫報告,1994。
15.王其美,「亞洲地區水資源的衝突與展望」,前瞻科技與管理,特刊,75-89頁,2010。
16.田璦菁,「颱洪期間區域總雨量估計最佳化之研究」,國立中央大學土木工程學系,碩士論文,2003。
17.林志彥,「台灣乾旱特性變動與頻率分析之研究」,國立成功大學水利及海洋工程學系,碩士論文,2007。
18.徐宏瑋,「降雨量變遷趨勢檢定與分析」,國立臺灣大學生物環境系統工程學研究所,碩士論文,2004。
19.國家災害防救科技中心,「台灣氣候變遷趨勢」,國研科技,第25期,40-46頁,2010。
20.許東鳴,「淡水河流域水文時空變異分析」,國立中央大學水文與海洋科學研究所,碩士論文,2009。
21.許晃雄,「與氣候一起飆舞?─坦然面對氣候變遷」,2003。
22.許晃雄,「臺灣氣候變遷科學報告」,2011。
23.陳人敬,「台灣南部年最大24小時與一日暴雨比值之探討」,國立成功大學水利及海洋工程學系,碩士論文,2003。
24.陳雲蘭,「百年來台灣氣候的變化」,科學發展,424期,6-11頁,2008。
25.陳錦嫣,「GIS與空間決策分析:Arc GIS入門與進階」,2007。
26.游保杉、楊道昌,「三參數極端值分佈於水文頻率分析之應用(年最大日暴雨)」,台灣水利季刊,第40卷第2期,36-45頁,1992。
27.游保杉、陳嘉榮,「台灣北部地區雨量強度公式之研究」,財團法人中興工程顧問社研究報告,1996。
28.黃文政、黃家鴻,「高屏溪流域之降雨乾旱分析」,全球變遷通訊雜誌,第四十七期,21-27頁,2005。
29.黃爾強,「區域雨量之趨勢評估及農業灌溉水量分析」,國立中央大學土木工程學系,碩士論文,2009。
30.經濟部水資源統一規劃委員會,「氣候變遷對台灣水文環境影響之研究」,1995。
31.虞國興、莊明德,「台灣乾旱特性之研究」,臺灣水利,第40卷第4期,20-33頁,1992。
32.虞國興、許書平,「氣候變遷對水資源之衝擊─雨量分析」,農業工程學報,第44卷第1期,9-24頁,1998。
33.臺灣省水利局,「台灣水文資料電腦檔應用之研究」,1989。
34.臺灣氣候變遷推估與資訊平台計畫, http://tccip.ncdr.nat.gov.tw/NCDR/main/index.aspx,2012。
35.臺灣颱風洪水研究中心大氣研究資料庫, http://dbar.ttfri.narl.org.tw/Default.aspx,2012。
36.鄭克聲,「氣候變遷對降雨時空分布特性影響之探討」,「農業水利科技研究發展」九十一年度成果發表討論會,2003。
37.蕭正凱,「區域降雨時空分布變遷特性」,國立中央大學土木工程學系,碩士論文,2009。
38.蕭政宗,「台灣地區一日暴雨之區域頻率分析」,第十五屆水利工程研討會論文集,2006。
39.賴怡君,「台灣地區降雨乾旱分析之研究」,國立臺灣海洋大學河海工程學系,碩士論文,2006。
40.簡嘉霖,「濁水溪流域之區域長期降雨變遷特性與預測」,國立中央大學土木工程學系,碩士論文,2010。
|