博碩士論文 993202004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:3.147.242.114
姓名 黃士軒(Shih-Syuan Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 脈衝荷重作用下新虎克定律圓球微孔動態弱化
(dynamics softening of the void of the Neo-Hookean law sphere)
相關論文
★ 各種載重作用下neo-Hookean材料微孔動態分析★ 劉氏保群算法於高雷諾數Burgers方程之應用及探討
★ 彈性材料圓孔非對稱變形近似解研究★ HAF描述含圓孔橡膠材料三軸壓縮變形的誤差分析
★ 國立中央大學-HAF描述圓形微孔非對稱變形的誤差計算★ 多微孔橡膠材料受拉變形平面應力分析
★ 非線性彈性固體微孔變形特性★ 鋼絲網加勁高韌性纖維混凝土於RC梁構件剪力補強研究
★ 高韌性纖維混凝土(ECC)之材料配比及添加物對收縮及力學性質影響★ 材料組成比例對超高性能纖維混凝土之工作性與力學性質之影響
★ 搜尋週期為四年時使用SDICAE作強震預測的最佳精度設定★ 牛頓型疊代法二次項效應
★ GEH理論壓密量速算式★ 擴散管流量解析解
★ 宏觀收斂迭代法速度比較★ 二次項效應混合型牛頓疊代法之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文將探討新虎克材料圓球的動力學反應,新虎克材料模型常用於模擬橡膠材料的力學行為,橡膠材料廣泛使用在建築物的避震器、輪胎、生醫工程材料等。本文研究橡膠材料球體含有微小孔洞分別受三種不同型式的脈衝荷重作用後使微孔的動態擴張,在脈衝荷重達一定強度後微孔迅速擴張,將形成材料結構上的弱化或破壞。本文將計算微孔在迅速且不穩定擴張時所達到脈衝荷重的臨界數值並定義之,並比較在不同形式的脈衝荷重作用時間下,材料弱化所需要的脈衝荷重強度以及其弱化嚴重程度。
摘要(英) This paper will explore dynamics response of the sphere of the Neo-Hookean materials. Neo-Hookean material model commonly used in the simulation of mechanical behavior of rubber materials,and they are widely used in the vibration isolations, tires, bio-materials .In this paper, we discuss the rubber spheres, which contain micro-voids and they will dynamic expand by the three types impulsive loadings, porous rapid growth after impulsive loadings up to a certain intensity , it will make the materials’structure softening or destruction.This article will calculate and define the micro-voids’impulsive loadings critical values, which in the rapid and unstable expansion situation. And comparing different impulsive loading time, the materials needed the softening impulsive loadings intensity as well as its severity.
關鍵字(中) ★ 非線性彈性材料
★ 脈衝荷重
★ 微孔擴張
關鍵字(英) ★ nonlinear elastic materials
★ void growth
★ Impulsive loadings
論文目次 目錄
摘 要 i
Abstract ii
誌 謝 iii
目錄 iv
圖目錄 v
表目錄 viii
符號說明 ix
第一章 緒論 1
第二章 基礎理論 3
第三章 數值解法與容忍誤差值 8
3-1 數值解法 8
3-2 誤差容忍度 9
第四章 脈衝荷重對孔洞的影響及弱化 15
4-1 脈衝荷重之種類 15
4-2 脈衝荷重與孔洞最大擴張 17
4-3 脈衝荷重作用下之微孔弱化定義 24
4-3-1 作用球體上的拉伸外應力 24
4-3-2 脈衝載重之弱化臨界值 25
4-4 脈衝荷重作用下之微孔弱化程度 36
第五章 結論與建議 40
參考文獻 42
參考文獻 參考文獻
1. F.A.McClintock, A criterion for ductile fracture by the growth of holes.J.Appl. Mech., 35 (1968) 363-371.
2. A.Needleman, Void growth in an elastic-plastic medium. J.Appl. Mech., 39(1972) 964-970.
3. A.L.Gurson, Continuum theory of ductile rupture by void nucleation and growth : Part Ⅰ- yield criteria and flow rules for porous ductile media.J.Energ. Matl. Tech.Trans. ASME, (1977) 2-15.
4. U.Stigh, Effects of interacting cavities on damage parameter. J.Appl. Mech,53 (1986) 485-490.
5. H.S.Hou and R.Abeyarante, Cavitation in elastic and elastic-plastic solids, J.Mech. Phys.Solids, 40 (1992) 571-592.
6. A.N.Gent,Cavitation in rubber: a cautionary tale. Rubber Chem.Tech.,63(1990) G49-G53.
7. L. Cheng and T.F. Guo, Void interaction and coalescence in polymeric materials. Int. J. Solids Struct., 44(2007)1787-1808.
8. C. J. Quigley and D.M. Parks, The finite deformation field surrounding a mode I plane strain crack in a hyperelastic incompressible material under small-scale nonlinearity. Int. J. Fracture, 65(1994)75-96.
9. J.C. Sobotka, R.H., Jr. Dodds and P. Sofronis, Effects of hydrogen on steady, ductile crack growth: Computational studies. Int. J. Solids Struct., 46(2009)4095-4106.
10. J.M.Ball, Discontinous equilibrium solutions and cavitation in nonlinear elasticity. Phil.Trans.R.Soc.Lond,A306 (1982) 557-610.
11. C.A.Stuart, Radially symmetric cavitation for hyperelastic materials,Ann.Inst.Henri Poincare-Analyse non lineare, 2 (1985) 33-66.
12. C.O.Horgan and R.Abeyaratne, A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void. J.Elasticity, 16 (1986)189-200.
13. F.Meynard, Existence and nonexistence results on the radially symmetric cavitation problem. Quart.Appl.Math. 50 (1992) 201-226.
14. C.A.Stuart, Estimating the critical radius for radially symmetric cavitation, Quart. Appl.Math., 51 (1993) 251-263.
15. S.Biwa, Critical stretch for formation of a cylindrical void in a compressible hyperelastic material. Int.J.Non-Linear Mech., 30 (1995)899-914
16. S.Biwa, E.Matsumoto and T.Shibata, Effect of constitutive parameters on formation of a spherical void in a compressible non-linear elastic material. J.Appl.Mech. 61 (1994) 395-401
17. H.C.Lei(李顯智) and H.W.Chang, Void formation and growth in a class of compressible solids. J.Engrg.Math., 30 (1996) 693-706.
18. R.W. Ogden, ‚Non-Linear Elastic Deformations‛.Ellis Horwood Limited,Chichester, England,1984.
19. J.N. Johnson, Dynamic facture and spallation in ductile solids. J. ppl.Phys.,52(1981)2812-2825.
20. R. Cortes, The growth of microvoids under intense dynamic loading. Int. J. Solids Struct.29(1992)1339-1350.
21. R. Cortes, Dynamic growth of microvoids under combined hydrostatic and deviatoric stresses.Int. J. Solids Struct. 29(1992)1637-1645.
22. F.L. Addessio, J.N. Johnson and P.J. Maudlin, The effect of void growth on Taylor cylinder impact experiments. J. Appl. Phys., 73(1993)7288-7297.
23. Z.P. Wang, Growth of voids in porous ductile materials at high strain rate.J. Appl. Phys.,76(1994)1535-1542.
24. J. Zheng, Y.L. Bai and Z.P. Wang, Influence of inertial and thermal effects on the dynamic growth of voids in porous ductile materials. J.Phys. IV France Colloq. C8 (DYMAT 94)4(1994)765-770.
25. W. Tong and G. Ravichandran, Inertial effects on void growth in porous viscoplastic materials.Trans. ASME: J. Appl. Mech., 62(1995)633-639.
26. X.Y. Wu, K.T. Ramesh and T.W. Wright , The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading. J. Mech.Phys. Solids, 51(2003)1-26.
27. T.W. Wright and K.T. Ramesh, Dynamic void nucleation and growth in solids:
A self-consistent statistical theory. J. Mech.Phys. Solids,56(2008)336-359.
28. M.S.Chou-Wang and C.O.Horgan, Cavitation in nonlinear elastodynamics for
neo-HooKean materials. Int.J.Engrg.Sci., 27 (1989) 967-973.
29. X Yuan, Z. Zhu and C. Cheng, Qualitative analysis of dynamical behavior for an incompressible neo-Hookean spherical shell. Appl. Math. Mech.(English Edition), 26(2005)973-981.
30. X Yuan, Z. Zhu and R. Zhang, Cavity formation and singular periodic oscillations in isotropic incompressible hyperelastic materials. Int. J.Non-Linear Mech. ,41(2006)294-303.
31. P.J. Blatz and W.L. Ko , Application of finite elastic theory to the deformation of rubbery materials . Trans.Soc. Rheol. , 6 (1962) 223-251.
32. M. Navarro, et. al., Biomaterials in orthopaedics. J. R. Soc.Interface,5(2008)1137 -1158.
33. Y. Jung, et. al., Cartilaginous tissue formation using a mechano-active scaffold and dynamic compressive stimulation. J. Biomaterials Sci.—Polymer Edition, 9(2008)61-74.
34. T. Hu and J.P. Desai, Characterization of soft-tissue material properties:Large deformation analysis. ‘Medical Simulation,Proceedings’ in Lecture Notes in Computer Science, 3078(2004)28-37.
35. J.Z. Wu, et. al., Nonlinear and viscoelastic characteristics of skin under compression: experiment and analysis. Bio-Medical Mater.Eng.,13(2003)373-385.
36. Z.Q. Liu and M.G. Scanlon, Modelling indentation of bread crumb by finite element analysis,Biosystems Eng., 85(2003)477-484.
37. M. Zidi, Circular shearing and torsion of a compressible hyperelastic and prestressed tube.Int. J. Non-Linear Mech., 35 (2000) 201-209.
38. M. Zidi, Torsion and axial shearing of a compressible hyperelastic tube. Mech. Res. Comm.,26 (1999) 245-252.
39. M. Cheref, M. Zidi and C. Oddou, Analytical modelling of vascular prostheses mechanics.Intra and extracorporeal cardiovascular fluid dynamics. Comput. Mech. Pub., 1 (1998) 191-202.
40. M. Zidi, Finite torsional and anti-plane shear of a compressible hyperelastic and transversely isotropic tube. Int. J. Engrg. Sci., 38(2000)1481-1496.
41. T.J. Paulson, et. al., Shaking table study of base isolation for masonary buildings. J. Struct.Eng., 117(1991)3315-3336.
42. A.D. Luca, et. al., Base isolation for retrofitting historic buildings:Evaluation of seismic performance through experimental investigation.Earthquake Eng. Struct. Dyn.,30(2001)1125-1145.
43. B. Yoo and Y.H. Kim, Study on effects of damping in laminated rubber bearings on seismic responses for a 1/8 scale isolated test structure.Earthquake Eng. Struct. Dyn., 31(2002)1777-1792.
44. Y.M. Wu and B. Samali, Shake table testing of a base isolated model. Eng.
Struct.,24(2002)1203-1215.
45. N. Lakshmanan, et. al., Experimental investigations on the seismic response of a base-isolated reinforced concrete frame model. J.Performance Constructed Facilities, ASCE,22(2008)289-296.
46. T.H. Kim, Y.J. Kim and H.M. Shin, Seismic performance assessment of reinforced concrete bridge piers supported by laminated rubber bearings. Struct Eng. Mech., 29(2008)259-278.
47. J.F. Kang and Y.Q. Jiang, Improvement of cracking-resistance and flexural behavior
of cement-based materials by addition of rubber particles. J. Wuhan Univ. Tech.—Mater.Sci.Edition, 23(2008)579-583.
48. G. Skripkiunas, et. al., Deformation properties of concrete with rubber waste additives. Mater. Sci.—Medziagotyra, 13(2007)219-223.
49. M.K. Batayneh, et., al., Promoting the use of crumb rubber concrete in developing countries. Waste Management, 28(2008)2171-2176.
50. L. Zheng, et. al., Strength, modulus of elasticity, and brittleness index of rubberized concrete. J. Mater. Civil Eng., ASCE,20(2008)692-699.
指導教授 李顯智(Hin-Chi Lei) 審核日期 2012-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明