博碩士論文 993202003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.16.51.237
姓名 蔡宏裕(Hung-yu Tsai)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 週期荷重作用下新虎克圓球微孔之動態分析
(Period load under the dynamic analysis of the neo-Hookean sphere micro-void)
相關論文
★ 各種載重作用下neo-Hookean材料微孔動態分析★ 劉氏保群算法於高雷諾數Burgers方程之應用及探討
★ 彈性材料圓孔非對稱變形近似解研究★ HAF描述含圓孔橡膠材料三軸壓縮變形的誤差分析
★ 國立中央大學-HAF描述圓形微孔非對稱變形的誤差計算★ 多微孔橡膠材料受拉變形平面應力分析
★ 非線性彈性固體微孔變形特性★ 鋼絲網加勁高韌性纖維混凝土於RC梁構件剪力補強研究
★ 高韌性纖維混凝土(ECC)之材料配比及添加物對收縮及力學性質影響★ 材料組成比例對超高性能纖維混凝土之工作性與力學性質之影響
★ 搜尋週期為四年時使用SDICAE作強震預測的最佳精度設定★ 牛頓型疊代法二次項效應
★ GEH理論壓密量速算式★ 擴散管流量解析解
★ 宏觀收斂迭代法速度比較★ 二次項效應混合型牛頓疊代法之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文主要探討neo-Hookean圓球中微孔在非線性的微分方程的動態反應之基礎下分析橡膠材料中微孔的動態擴張。neo-Hookean 圓球孔洞在受到週期荷重的影響下震動型態並非固定,隨模型所承受之初始條件改變而改變。在相同孔洞大小下,施加不同的外力,其材料孔洞會有不穩定擴張,此力學行為可能造成材料模型局部分子結構弱化導致整體材料衰減。
本文研究週期外力對neo-Hookean圓球模型的影響,並討論圓球微孔因為外力而造成弱化之情況。
摘要(英) This paper mainly discusses the neo-Hookean sphere micro-void in the basis of the dynamic response of nonlinear differential equations to analyze the dynamic expansion of the micro-void rubber material. neo-Hookean sphere voids in the period load under the influence of vibration patterns are not fixed and change the model initial conditions which are subject to change. The nonlinear effect on the ball with a micro-void is more obvious. The dynamical behavior of the micro-void will change when loadings with different load are applied to the surface of the rubber ball.
In this paper, the periodic load force on the neo-Hookean sphere model, and discuss the micro-void because of external forces caused by softing.
關鍵字(中) ★ 孔洞擴張
★ 材料強度衰減
★ 橡膠材料
關鍵字(英) ★ Rubber
★ strength degradation
★ void growth
論文目次 摘要......................................................I
Abstract.................................................II
誌謝....................................................III
目錄.....................................................IV
圖目錄...................................................VI
符號表................................................. XIV
第一章 緒論..............................................1
第二章 基礎理論..........................................4
第三章 數值計算方法的評估
3.1 MATLAB內建ODE45、ODE23.......................10
3.2 neo-Hookean圓球基本震動型態.................11
第四章 週期載重對微孔之影響
4.1 週期荷重對微孔之影響.........................13
4.2 週期荷重施加時間長短之影響...................16
4.3 週期荷重作用下微孔動態反應之關係圖...........18
4.3.1 週期荷重 Y_max-P 關係圖................19
4.3.2 週期荷重 Y_max-ω_0 關係圖.............29
4.4 共振.........................................34
4.4.1 週期荷重 ω_res-P 關係圖...............37
4.4.2 週期荷重 Y_res-P 關係圖................45
4.5 週期荷重下之弱化.............................58
第五章 結論與建議.......................................77
參考文獻.........................................80
參考文獻 1. J.M.Ball, Discontinous equilibrium solutions and cavitation in nonlinear elasticity. Phil.Trans.R.Soc.Lond, A306 (1982) 557-610.
2. A.Needleman, Void growth in an elastic-plastic medium. J.Appl. Mech., 39 (1972) 964-970.
3. F.A.McClintock, A criterion for ductile fracture by the growth of holes. J.Appl. Mech., 35 (1968) 363-371.
4. U.Stigh, Effects of interacting cavities on damage parameter. J.Appl. Mech, 53 (1986) 485-490.
5. A.N.Gent,Cavitation in rubber: a cautionary tale. Rubber Chem.Tech., 63 (1990) G49-G53.
6. C.Fong, Cavitation criterion for rubber materials: a review of void-growth models. J. Polymer Sci.: Part B: Polymer Phys., 39(2001)2081-2096.
7. E. Bayraktar, et. al., Damage mechanisms in natural (NR) and synthetic rubber (SBR): nucleation, growth and instability of the cavitation. Fatique Fract. Engrg. Mater. Struct., 31(2008)184-196.
8. T.W. Wright and K.T. Ramesh, Dynamic void nucleation and growth in solids: A self-consistent statistical theory. J. Mech. Phys. Solids, 56(2008)336-359.
9. J. Sivaloganathan and S.J. Spector, On cavitation, configurational forces and implications for fracture in a nonlinearly elastic material. J. of Elasticity, 67(2002)25-49.
10. C.O.Horgan and D.A.Polignone, Cavitation in nonlinearly elastic solids: a review. Appl.Mech.Rev., 48 (1995) 471-485.
11. H.S.Hou and R.Abeyarante, Cavitation in elastic and elastic-plastic solids, J.Mech.Phys.Solids, 40 (1992) 571-592
12. M. Danielsson, D.M. Parks and M.C. Boyce, Constitutive modeling of porous hyperelastic material. Mech. Mater., 36(2004)347-358.
13. O. Lopez-Pamies and P. Ponte Castaneda, Homogenization-based constitutive models for porous elastomers and implications for macroscopic instabilities: I—Analysis. J. Mech. Phys. Solids, 55(2007)1677-1701.
14. J. Li, D. Mayau and V. Lagarrigue, A constitutive model dealing with damage due to cavity growth and the Mullins effect in rubber-like materials under triaxial loading. J. Mech. Phys. Solids, 56(2008)953-973.
15. J.G. Ning, H.F. Liu and L. Shang, Dynamic mechanical behavior and the constitutive model of concrete subjected to impact loadings. Sci. China Ser. G—Phys. Mech. Astron., 51(2008)1745-1760.
16. O. Lopez-Pamies and P. Ponte Castaneda, Homogenization-based constitutive models for porous elastomers and implications for macroscopic instabilities: II—Results. J. Mech. Phys. Solids, 55(2007)1702-1728.
17. J. Li, D. Mayau and F. Song, A constitutive model for cavitation and cavity growth in rubber-like materials under arbitrary tri-axial loading. Int. J. Solids Struct., 44(2007)6080-6100.
18. L. Cheng and T.F. Guo, Void interaction and coalescence in polymeric materials. Int. J. Solids Struct., 44(2007)1787-1808.
19. J.C. Sobotka, R.H., Jr. Dodds and P. Sofronis, Effects of hydrogen on steady, ductile crack growth: Computational studies. Int. J. Solids Struct., 46(2009)4095-4106.
20. C. J. Quigley and D.M. Parks, The finite deformation field surrounding a mode I plane strain crack in a hyperelastic incompressible material under small-scale nonlinearity. Int. J. Fracture, 65(1994)75-96.
21. C.A.Stuart, Radially symmetric cavitation for hyperelastic materials, Ann.Inst.Henri Poincare-Analyse non lineare, 2 (1985) 33-66.
22. F.Meynard, Existence and nonexistence results on the radially symmetric cavitation problem. Quart.Appl.Math. 50 (1992) 201-226
23. S.Biwa, Critical stretch for formation of a cylindrical void in a compressible hyperelastic material. Int.J.Non-Linear Mech., 30 (1995) 899-914
24. H.C.Lei(李顯智) and H.W.Chang, Void formation and growth in a class of compressible solids. J.Engrg.Math., 30 (1996) 693-706.
25. O. Lopez-Pamles and M.I. Idiart, An exact result for the macroscopic response of porous neo-Hookean solids. J. Elasticity, 95(2009)99-105.
26. X.G. Yuan, Z.Y. Zhu and C.J. Cheng, Study on cavitated bifurcation problems for sphere composed of hyper-elastic materials. J.Engrg. Math., 51 (2005)15-34.
27. S.Biwa, E.Matsumoto and T.Shibata, Effect of constitutive parameters on formation of a spherical void in a compressible non-linear elastic material. J.Appl.Mech. 61 (1994) 395-401
28. C.A.Stuart, Estimating the critical radius for radially symmetric cavitation, Quart.Appl.Math., 51 (1993) 251-263.
29. C.O.Horgan and R.Abeyaratne, A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void. J.Elasticity, 16 (1986) 189-200.
30. J.N. Johnson, Dynamic facture and spallation in ductile solids. J. Appl. Phys., 52(1981)2812-2825.
31. R. Cortes, Dynamic growth of microvoids under combined hydrostatic and deviatoric stresses. Int. J. Solids Struct. 29(1992)1637-1645.
32. Z.P. Wang, Growth of voids in porous ductile materials at high strain rate. J. Appl. Phys., 76(1994)1535-1542.
33. W. Tong and G. Ravichandran, Inertial effects on void growth in porous viscoplastic materials. Trans. ASME: J. Appl. Mech., 62(1995)633-639.
34. X.Y. Wu, K.T. Ramesh and T.W. Wright, The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading. J. Mech. Phys. Solids, 51(2003)1-26.
35. J. Zheng, Y.L. Bai and Z.P. Wang, Influence of inertial and thermal effects on the dynamic growth of voids in porous ductile materials. J. Phys. IV France Colloq. C8 (DYMAT 94) 4(1994)765-770.
36. F.L. Addessio, J.N. Johnson and P.J. Maudlin, The effect of void growth on Taylor cylinder impact experiments. J. Appl. Phys., 73(1993)7288-7297.
37. R. Cortes, The growth of microvoids under intense dynamic loading. Int. J. Solids Struct. 29(1992)1339-1350.
38. R. Hill, The Mathematical Theory of Plasticity. Clarendon Press, Oxford, 1950.
39. R. Abeyaratne and H.S. Hou, J. Appl. Mech., 56(1989)40.
40. M.S.Chou-Wang and C.O.Horgan, Cavitation in nonlinear elastodynamics for neo-HooKean materials. Int.J.Engrg.Sci., 27 (1989) 967-973.
41. X Yuan, Z. Zhu and R. Zhang, Cavity formation and singular periodic oscillations in isotropic incompressible hyperelastic materials. Int. J. Non-Linear Mech., 41(2006)294-303.
42. X.G. Yuan and H.W. Zhang, Effects of constitutive parameters and dynamic tensile loads on radially periodic oscillation of micro-void centered at incompressible hyperelastic spheres. CMES, 40(2009)201-224.
43. X Yuan, Z. Zhu and C. Cheng, Qualitative analysis of dynamical behavior for an incompressible neo-Hookean spherical shell. Appl. Math. Mech. (English Edition), 26(2005)973-981.
44. M.K. Batayneh, et., al., Promoting the use of crumb rubber concrete in developing countries. Waste Management, 28(2008)2171-2176.
45. T.J. Paulson, et. al., Shaking table study of base isolation for masonary buildings. J. Struct. Eng., 117(1991)3315-3336.
46. A.D. Luca, et. al., Base isolation for retrofitting historic buildings: Evaluation of seismic performance through experimental investigation. Earthquake Eng. Struct. Dyn., 30(2001)1125-1145.
47. B. Yoo and Y.H. Kim, Study on effects of damping in laminated rubber bearings on seismic responses for a 1/8 scale isolated test structure. Earthquake Eng. Struct. Dyn., 31(2002)1777-1792.
48. Y.M. Wu and B. Samali, Shake table testing of a base isolated model. Eng. Struct., 24(2002)1203-1215.
指導教授 李顯智(shian-jr Li) 審核日期 2012-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明