博碩士論文 983202038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.142.198.51
姓名 邱吉爾(Ji-Er QIU)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以動態離心模型試驗模擬液化地盤淺基礎建築物之受震反應
(Centrifuge modeling on seismic responses of building with shallow foundations in liquefiable ground during earthquakes)
相關論文
★ 土壤液化評估模式之不確定性★ 廣域山崩之統計與最佳化分析-以莫拉克風災小林村鄰近地區為例
★ 砂土層中隧道開挖引致之地盤沉陷與破壞機制及對既存基樁之影響★ 砂土中模型基樁之單向反覆軸向載重試驗
★ 邊坡穩定分析方法之不確定性★ 以離心模型試驗探討逆斷層作用下單樁與土壤互制反應
★ 不同試驗方法對黏土壓縮與壓密性質之影響★ 台北盆地黏性土壤不排水剪力強度之研究
★ 攝影測量在離心模擬試驗之應用-以離心隧道模型之地表沉陷量量測為例★ 土壤液化引致地盤永久位移之研究
★ 台北盆地地盤放大特性之研究★ 沉箱式碼頭受震反應的數值分析
★ 軟土隧道襯砌應力與地盤變位之數值分析★ 水力回填煤灰之動態特性
★ 沉箱碼頭受震反應及側向位移分析★ 潛盾隧道開挖面穩定與周圍土壓力之離心模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究設計三種不同樓層數(1、3、5層樓)重量之淺基礎建築物模型,利用中大地工離心機於50g離心力場下進行模型試驗,並藉由試體中安裝之加速度計、孔隙水壓計、土壓力計、線性差動可變變壓器(LVDT)、雷射位移計及淺基礎建築物上之應變規,分別量測各項物理量之受震歷時,探討淺基礎建築物於液化地盤上之受震反應。
研究結果顯示:(1) 砂土試體在土壤未達液化狀態時,有明顯加速度振幅放大效應,但當地盤產生液化現象時,液化層會阻隔振波的傳遞,對建築物有振動衰減之反應;(2)建築物越重時,受振後所產生的沉陷量會越大;(3)建築物之沉陷會隨輸入振動的增強而增加,且大部分的沉陷都在振動期間所產生;(4)當施加振動越大時,液化層的深度會越深,且土層液化狀態維持時間較長,超額孔隙水壓消散所需的時間也較為長久;(5)在離心模型試驗中,使用黏滯流體作為砂土試體之飽和液體,可使超額孔隙水壓的激發與消散更為真實模擬現地之情況。
摘要(英) This research is a project for studying post-earthquake settlement and deformation behavior of buildings with shallow foundations in liquefiable ground using dynamic centrifuge tests. In this research, a centrifugal scale-down model was specifically designed and tested at 50g. The model buildings used in the study have three different weights and in the different sand beds saturated with water and viscous fluid, respectively. Several accelerometers, pore water pressure transducers, linear variable differential transformer (LVDT), laser displacement sensor, and earth pressure cells were installed to measure the seismic response, the generation of pore water pressure in the surrounding soil during shaking and the displacement histories of the surface settlement and of the building during shaking.
According to the analysis of model test results, the following conclusions
are made: (1) In liquefiable ground, liquefied layer will barrier vibration pass to cause buildings vibrate will be decreased. (2) On post-earthquake, the heavier buildings settlement will be larger. (3) Buildings settlement increased with the input vibration increase. (4) The liquefied layer depth increased with the input vibration increases.
關鍵字(中) ★ 淺基建築物
★ 地工離心機
★ 加速度放大效應
★ 超額孔隙水壓
關鍵字(英) ★ shallow foundation
★ liquefiable ground
★ dynamic centrifuge tests
論文目次 目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究方法 2
1-3 論文架構 3
第二章 文獻回顧 4
2-1 土壤液化 4
2-2 離心模型原理 5
2-2-1 離心模型之基本相似律 5
2-2-2 離心模型之基本動態相似律 6
2-3 試驗用孔隙流體 10
2-4 淺基礎建築物受震的相關研究 11
2-4-1 土層密度與滲透性對基礎沉陷之影響 11
2-4-2 側向循環加載試驗與振動台試驗 12
第三章 試驗方法與試驗設備 24
3-1 試驗方法 24
3-2 儀器設備與相關設備 24
3-2-1 地工離心機 24
3-2-2 中大離心振動台 25
3-2-3 資料擷取系統 25
3-2-4 積層版式試驗箱 26
3-2-5 淺基礎建築物模型 26
3-2-6 各式感測器(加速度計、孔隙水壓計、LVDT) 27
3-2-7 移動式霣降機 28
3-3 試驗土樣及其基本性質 28
3-4 試驗準備步驟與流程 29
3-4-1 試驗箱之準備與組立 29
3-4-2 重模試體製作 30
3-4-3 土壤試體飽和 31
3-4-4 離心機繞行前準備與振動試驗開始 32
第四章 試驗規劃與試驗結果分析 53
4-1 試驗規劃 53
4-2 試驗內容 54
4-3 加速度歷時比較 57
4-3-1 一層樓建築物模型於不同飽和液體時加速度歷時 58
4-3-2 不同樓層數(重量)建築物模型加速度歷時 60
4-3-3 土層深度與加速度歷時之關係 62
4-3-4 土層的主頻計算 64
4-3-5 利用轉換函數探討建築物與土層的頻率特性 64
4-3-6 加速度歷時小結 66
4-4 超額孔隙水壓歷時比較 67
4-4-1 不同飽和液體之超額孔隙水壓歷時比較 67
4-4-2 不同樓層建築物之超額孔隙水壓歷時比較 69
4-4-3 不同輸入振動強度之超額孔隙水壓歷時比較 69
4-4-4 超額孔隙水壓比歷時 70
4-4-5 超額孔隙水壓歷時小結 71
4-5 建築物與自由土層沉陷量之比較 72
4-6 積層版箱側向位移歷時 76
4-7 土壓力歷時與地板應變歷時 77
4-8 試驗結果總整理 78
第五章 結論與建議 142
5-1 結論 142
5-2 建議 144
參考文獻 145
參考文獻 參考文獻
1. Stewart, D.P., Chen, Y,R., and Kutter, B.L., “Experience with the Use of Methylcellulose as a Viscous Pore Fluid in Centrifuge Models,” Geotechnical Testing Journal, Vol. 21, No. 4, pp. 365-369 (1998)
2. Liu, L., and Dobry, R., “Seismic Response of Shallow Foundation on Liquefiable Sand,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 123, No. 6, pp. 557-567 (1997).
3. Gajan, S., Kutter, B.L., Phalen, J.D., Hutchinson, T.C., and Martin, G.R., “Centrifuge modeling of load-deformation behavior of rocking shallow foundations,” Soil Dynamics and Earthquake Engineering, Vol. 25, pp. 773-783 (2005).
4. Thorel, L., Rault, G., Garnier, J., Escoffier, S., and Boura, C., “Soil-footing interaction: Building subjected to lateral cyclic loading,” 6th International Conference on Physical Modelling in Geotechnics (2006).
5. Dashti, S., Bray, J., Riemer, M., and Wilson, D., “Centrifuge Experimentation of Building Performance on Liquefied Ground,” Geotechnical Earthquake Engineering and Soil Dynamics IV (2008)
6. Gajan, S., and Kutter, B.L., “Capacity, Settlement, and Energy Dissipation of Shallow Footings Subjected to Rocking,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 134, No. 8, pp. 1129-1141(2008)
7. Dashti, S., Bray, J.D., Pestana, J.M., Riemer, M., and Wilson, D., “Mechanisms of Seismically Induced Settlement of Buildings With Sallow Foundations on Liquefiable Soil,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 1, pp.151-164 (2010)
8. Dobry, R., and Liu, L., “Centrifuge modeling of soil liquefaction,” Tenth World Conference on Earthquake Engineering, Balkema Rotterdam (1994)
9. Liu, L., and Dobry, R., “Centrifuge study of shallow foundations on saturated sand during earthquakes,” Proc., 4th Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures against Soil Liquefaction, Nat. Ctr. For Earthquake Engrg. Res., State Univ. of New York at Buffalo, Buffalo, N.Y., 493-508 (1992)
10. Tokimatsu, K., and Seed, H.B., “Evaluation of settlements in sands due to earthquake shaking,” Journal of Geotechnical Engineering, ASCE, Vol. 113, No.8, pp. 861-878 (1987)
11. Bird, J.F., Bommer, J.J., Crowley, H., and Pinho, R., “Modelling liquefaction-induced building damage in earthquake loss estimation,” Soil Dynamics and Earthquake Engineering, Vol. 26, pp. 15-30 (2006)
12. Hushmand, B., Scott, R.F., and Crouse, C.B., “Centrifuge Liquefaction Tests in a Laminar Box,” Geotechnique, Vol. 38, No. 2, pp. 253-262 (1988)
13. Sharp, M.K., Dobry, R., and Abdoun, T.H., “Liquefaction Centrifuge Modeling of sand of Different Permeability,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 12, (2003)
14. Yoshimi, Y., “Settlement of buildings on saturated sand during earthquakes,” Soils and Foundations, Vol. 17, pp. 23-28 (1977)
15. Kutter, B.L., O’Leary, L.M., Thompson, P.Y., and Lather, R., “Gravity-Scaled Tests on Blast-Induced Soil-Structure Interaction,” Journal of Geotechnical Engineering, Vol. 114, No. 4, (1988)
16. Knappett, J.A., Haigh, S.K., and Madabhushi S.P.G., “Mechanisms of failure for shallow foundations under earthquake loading,” Soil Dynamics and Earthquake Engineering, Vol. 26, pp. 91-102 (2006)
17. Gajan, S., and Kutter, B.L., “Contact Interface Model for Shallow Foundations Subjected to Combined Cyclic Loading,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 3, pp. 407–419 (2009)
18. 中華民國大地工程學會,建築物基礎構造設計規範,中華民國大地工程學會(2001)。
19. 郭玉潔,「探討積層版試驗箱進行動態離心模型試驗之邊界效應」,碩士論文,國立中央大學土木工程學系,中壢 (2009)。
20. 鄺柏軒,「利用動態離心模型試驗模擬砂土層之剪應力與剪應變關係」,碩士論文,國立中央大學土木工程學系,中壢 (2010)。
21. 王崇儒,「利用彎曲元件探查離心砂土模型剪力波波速剖面及其工程上的應用」,碩士論文,國立中央大學土木工程學系,中壢(2010)。
22. 莊汶雅,「以動態離心模型試驗模擬沉埋隧道上浮機制」,碩士論文,國立中央大學土木工程學系,中壢(2010)。
23. 蔡晨暉,「以離心模型試驗模擬沉箱式碼頭之受震行為」,碩士論文,國立中央大學土木工程學系,中壢(2010)。
24. 凃亦峻,「位於可液化砂土層中單樁基礎受震反應的離心模擬」,碩士論文,國立中央大學土木工程學系,中壢(2011)。
指導教授 黃俊鴻、李崇正(J. H. Hwang) 審核日期 2012-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明