參考文獻 |
1. J.F. Kang and Y.Q. Jiang, Improvement of cracking-resistance and flexural behavior of cement-based materials by addition of rubber particles. J. Wuhan Univ. Tech.—Mater.Sci. Edition, 23(2008)579-583.
2. G. Skripkiunas, et. al., Deformation properties of concrete with rubber waste additives.
Mater. Sci.—Medziagotyra, 13(2007)219-223.
3. M.K. Batayneh, et., al., Promoting the use of crumb rubber concrete in developing countries. Waste Management, 28(2008)2171-2176.
4. L. Zheng, et. al., Strength, modulus of elasticity, and brittleness index of rubberized concrete. J. Mater. Civil Eng., ASCE, 20(2008)692-699.
5.張惠文,砂土中減振模型樁之動態性質,國科會計劃(NSC96-2221-E008-059-MY3)。執行期間:九十八年八月至九十九年七月。
6. T.J. Paulson, et. al., Shaking table study of base isolation for masonary buildings. J. Struct. Eng., 117(1991)3315-3336.
7. A.D. Luca, et. al., Base isolation for retrofitting historic buildings: Evaluation of seismic performance through experimental investigation. Earthquake Eng. Struct. Dyn., 30(2001)1125-1145.
8. B. Yoo and Y.H. Kim, Study on effects of damping in laminated rubber bearings on seismic responses for a 1/8 scale isolated test structure. Earthquake Eng. Struct. Dyn., 31(2002)1777-1792.
9 Y.M. Wu and B. Samali, Shake table testing of a base isolated model. Eng. Struct., 24(2002)1203-1215.
10. N. Lakshmanan, et. al., Experimental investigations on the seismic response of a base-isolated reinforced concrete frame model. J. Performance Constructed Facilities, ASCE, 22(2008)289-296.
11. T.H. Kim, Y.J. Kim and H.M. Shin, Seismic performance assessment of reinforced concrete bridge piers supported by laminated rubber bearings. Struct Eng. Mech., 29(2008)259-278.
12. M. Navarro, et. al., Biomaterials in orthopaedics. J. R. Soc. Interface, 5(2008)1137-1158.
13. Y. Jung, et. al., Cartilaginous tissue formation using a mechano-active scaffold and dynamic compressive stimulation. J. Biomaterials Sci.—Polymer Edition, 19(2008)61-74.
14. T. Hu and J.P. Desai, Characterization of soft-tissue material properties: Large deformation analysis. ‘Medical Simulation, Proceedings’ in Lecture Notes in Computer Science, 3078(2004)28-37.
15. J.Z. Wu, et. al., Nonlinear and viscoelastic characteristics of skin under compression: experiment and analysis. Bio-Medical Mater. Eng., 13(2003)373-385.
16. Z.Q. Liu and M.G. Scanlon, Modelling indentation of bread crumb by finite element analysis, Biosystems Eng., 85(2003)477-484.
17. M. Zidi, Circular shearing and torsion of a compressible hyperelastic and prestressed tube. Int. J. Non-Linear Mech., 35 (2000) 201-209.
18. M. Zidi, Torsion and axial shearing of a compressible hyperelastic tube. Mech. Res. Comm., 26 (1999) 245-252.
19. M. Cheref, M. Zidi and C. Oddou, Analytical modelling of vascular prostheses mechanics. Intra and extracorporeal cardiovascular fluid dynamics. Comput. Mech. Pub., 1 (1998) 191-202.
20. M. Zidi, Finite torsional and anti-plane shear of a compressible hyperelastic and transversely isotropic tube. Int. J. Engrg. Sci., 38 (2000) 1481-1496.
21. H.S. Hou and R. Abeyaratne, Cavitation in elastic and elastic-plastic solids.. J. Mech. Phys. Solids, 40 (1992) 571-592
22. M. Danielsson, D.M. Parks and M.C. Boyce, Constitutive modeling of porous hyperelastic material. Mech. Mater., 36(2004)347-358.
23. J. Li, D. Mayau and F. Song, A constitutive model for cavitation and cavity growth in rubber-like materials under arbitrary tri-axial loading. Int. J. Solids Struct., 44(2007)6080-6100.
24. O. Lopez-Pamies and P. Ponte Castaneda, Homogenization-based constitutive models for porous elastomers and implications for macroscopic instabilities: I—Analysis. J. Mech. Phys. Solids, 55(2007)1677-1701.
25. O. Lopez-Pamies and P. Ponte Castaneda, Homogenization-based constitutive models for porous elastomers and implications for macroscopic instabilities: II—Results. J. Mech. Phys. Solids, 55(2007)1702-1728.
26. J. Li, D. Mayau and V. Lagarrigue, A constitutive model dealing with damage due to cavity growth and the Mullins effect in rubber-like materials under triaxial loading. J. Mech. Phys. Solids, 56(2008)953-973.
27. R.W. Ogden, On constitutive relations for elastic and plastic materials. Ph.D. Dissertation, Cambridge University, 1970.
28. R.W. Ogden, Large deformation isotropic elasticity I: on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc.London, Series A, 326(1972)565-584.
29. R.W. Ogden, ‘Elastic Deformations of rubberlike solids’ in Mechanics of Solids, The Rodney Hill 60th Anniversary Volume (Eds. H.G. Hopkins and M.J. Sewell). Pergamon Press, pp. 499-537, 1982.
30. R.W. Ogden, “Non-Linear Elastic Deformations”. Ellis Horwood Limited, Chichester, England,1984.
31. T. Beda, Modelling hyperelastic behavior of rubber: a novel invariant-based and a review of constitutive models. J. Polymer Sci.: Part B: Polymer phys., 45(2007)1713-1732.
32. J.M. Hill, Some partial solutions of finite elasticity. Ph.D. thesis, University of Queensland (1972).
33. J.M. Hill, On static similarity deformations for isotropic materials. Q. Appl. Math., 40(1982)287-291.
34. H.C. Lei (李顯智) and J.A.Blume , Lie group and invariant solution of the plane-strain equation of motion of a neo-Hookean solid . Int. J. Non-linear Mech. , 31 (1996) 465-482 .
35. H.C. Lei (李顯智) and M.J. Hung , Linearity of waves in some systems of non-linear elastodynamics . Int.J. Non-Linear Mech. ,32 (1997) 353-360 .
36. H.C. Lei (李顯智)(2005), Sequentially linearizable initial-boundary value problems for a neo-Hookean cylinder, Journal of the Chinese Institute of Engineers,28(2005)763-769
37. R.S. Rivlin and D.W. Saunders, Philos. Trans. R. Soc. London, Series A, 243(1951)251.
38. R.S. Rivlin, In “Reology: Theory and Applications”. F.R. Eirich, Eds., Academic Press, New York, Vol. 1, 1956.
39. A.E. Green and J.E. Adkins, Large Elastic Deformation and Nonlinear Continuum Mechanics. Clarendon Press, Oxford, 1970.
40. L.R.G.. Treloar, The Physics of Rubber Elasticity, 3rd ed.. Oxford University Press, Oxford, 1975.
41. T. Beda and Y. Chevalier, Hybrid continuum model for large elastic deformation of rubber . J. Appl. Phys. AIP, 94(2003)2701-2706
42. T. Beda and Y. Chevalier, Non-linear approximation method by an approach in stages. Comput. Mech., 32(2003)177-184
43. T. Beda, Reconciling the fundamental phenomenological expression of the strain energy of rubber with established experimental facts. J. Sci., Part B: Polym. Phys., 43(2005)125-134
44. T. Beda, Optimizing the Ogden strain energy expression of rubber materials . J. Engrg. Mater. Technol. ASME, 127(2005)351-353.
45. T. Beda, Combining Approach in Stages with Least Squares for fits of data in hyperelasticity . Comptes Rendus Mecanique, 334(2006)628-633
|