博碩士論文 993202035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.145.72.44
姓名 郭偉民(Wei-min Kuo)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 延遲性鈣礬石形成與鹼-骨材反應引致劣化機制
(The effect of delayed ettringite formation and alkali-silica reaction in concrete)
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文探討混凝土產生延遲性鈣礬石形成與鹼-骨材反應的劣化機制,不論延遲性鈣礬石形成或鹼-骨材反應都會使混凝土產生明顯膨脹, 自行設計膨脹量試驗,並使用掃描式電子顯微鏡與維區元素分析儀觀察延遲性鈣礬石形成、鹼-骨材反應與兩者並存之試體反應機制。膨脹量試驗使用砂漿棒試體,砂漿棒分別使用標準砂與水泥製作,另一組砂漿棒使用安山岩與水泥製作,並使用不同的實驗條件,如硫含量(0%和5%)與養護溫度(20℃、70℃和85℃)。結果顯示硫含量與養護溫度對於延遲性鈣礬石形成有重大影響,砂漿棒試體在晚期會產生包圍骨材的裂縫引致明顯膨脹,砂漿棒試體同時存在鹼含量、水及反應性骨材會產生鹼-骨材反應。此外,延遲性鈣礬石形成晶體與鹼-骨材反應膠體可以使用掃描式電子顯微鏡與維區元素分析儀進行微觀形貌與化學成分的觀測。
摘要(英) This paper presents the determination of concrete deterioration, which is contributed by delayed ettringite formation (DEF) and alkali-silica reaction (ASR). The deterioration process of either DEF or ASR is associated with expansion. This paper employed “self-designed expansionary test”, Scanning Electron Microscopy (SEM), and Energy Dispersive Spectrometer (EDS) to observe DEF, ASR, and coupled DEF-ASR reactions mechanisms. The mortar
bars were used in the proposed expansionary test. One kind of mortar bar consisted of standard sand and cement; the other consisted of andesite and cement. Parametric study is also introduced in this paper, all of mortar bars were
placed at different sulfur contents (0% and 5.2%) and various curing temperatures (20℃, 70℃, and 85℃) in experimental conditions. The results show that the curing temperature and sulfur content play important roles for DEF,
which will induce great expansion by many micro-cracks surrounding aggregates at the latter period of mortar age. ASR is based upon the environments of alkali content, water content, and reactive aggregates in mortar bars. Moreover,micro-features and chemical compositions of delayed ettringite crystal and alkali-silica gel can be precisely observed by using SEM and EDS.
關鍵字(中) ★ 延遲性鈣礬石鹼-骨材反應
★ 高溫養護
★ 掃描式電子顯微鏡
關鍵字(英) ★ High Temperature Curing
★ DEF
★ ASR
★ SEM
論文目次 目錄
摘要 ......................................................................................... I
誌 謝 ..................................................................................... III
照片目錄 ............................................................................. VII
表目錄 .................................................................................... X
圖目錄 .................................................................................. XI
第一章 緒論 .......................................................................... 1
1-1 研究動機 ................................................................................. 1
1-2 研究目的 ................................................................................. 3
1-3 研究方法 ................................................................................. 3
1-4 論文內容與架構 ..................................................................... 4
第二章 文獻回顧 ................................................................... 5
2-1 延遲性鈣礬石的發展............................................................. 5
2-2 延遲性鈣礬石形成條件 ........................................................ 6
2-2-1 水泥之硫酸鹽 ................................................................................... 7
2-2-2 微裂縫存在 ....................................................................................... 9
2-2-3 暴露於潮濕的環境 ......................................................................... 10
2-2-4 高溫養護 ......................................................................................... 12
2-3 延遲性鈣礬石晶體形狀 ...................................................... 13
2-4 延遲性鈣礬石的檢測........................................................... 15
2-5 鹼-骨材反應與延遲性鈣礬石 ............................................ 16
2-6 延遲性鈣礬石形成的膨脹機制 .......................................... 17
2-6-1 鈣礬石生長壓力理論 ..................................................................... 18
2-6-2 統一漿體擴充理論 ......................................................................... 19
2-7 掃描式電子顯微鏡原理 ...................................................... 20
第三章 實驗規劃與方法 ..................................................... 22
3-1 試驗規劃 ............................................................................... 22
3-2 試驗材料 ............................................................................... 23
3-2-1 水泥 ................................................................................................. 23
3-2-2 骨材 ................................................................................................. 24
3-2-3 硫酸鈉添加劑 ................................................................................. 25
3-3 砂漿棒試體實驗配置........................................................... 26
3-4 砂漿棒試驗儀器與製作步驟 .............................................. 27
3-4-1 製作砂漿棒儀器 ............................................................................. 27
3-4-2 砂漿棒試驗步驟 ............................................................................. 28
3-5 砂漿棒膨脹量量測儀器與步驟 .......................................... 29
3-5-1 砂漿棒膨脹量量測儀器 ................................................................. 29
3-5-2 砂漿棒膨脹量量測步驟 ................................................................. 29
3-6 砂漿棒裂縫密度計算儀器與量測步驟 .............................. 31
3-6-1 砂漿棒裂縫密度計算儀器 ............................................................. 31
3-6-2 砂漿棒裂縫密度量測步驟 ............................................................. 31
3-7 試體裂縫形貌觀測儀器與試驗步驟 .................................. 32
3-7-1 試體裂縫形貌觀測儀器 ................................................................. 32
3-7-2 試體裂縫形貌觀測試驗步驟 ......................................................... 32
3-8 微觀分析試體製作儀器與試驗步驟 .................................. 34
3-8-1 微觀分析試體製作儀器 ................................................................. 34
3-8-2 微觀分析試體製作步驟 ................................................................. 34
3-9 試體微觀分析儀器與試驗步驟 .......................................... 35
4-5-1 試體微觀分析儀器 ......................................................................... 35
4-5-2 試體微觀分析試驗步驟 ................................................................. 36
第四章 實驗結果與討論 ..................................................... 37
4-1 試體介紹 ............................................................................... 37
4-2 砂漿棒膨脹量試驗結果 ...................................................... 38
4-3 延遲性鈣礬石引致裂縫密度與膨脹量之關係 .................. 40
4-4 裂縫形貌 ............................................................................... 50
4-5 試體微觀分析結果 ............................................................... 54
4-5-1 試體微觀分析 ................................................................................. 55
第五章 結論 ......................................................................... 67
參考文獻 ...............................................................................70
參考文獻 1. 王尹廷,「鹼-骨材反應引致裂縫之量測與分析」,碩士論文,國立中央大學土木工程學系,中壢(2004)。
2. 官毅明,「鹼-矽膠體的形貌與組成」,碩士論文,國立中央大學土木工程學系,中壢(2011) 。
3. 張文恭,「花蓮地區單一岩種之鹼-骨材反應研究」,碩士論文,國立中央大學土木工程學系,中壢(2000)。
4. 張庭華,「海岸山脈安山岩之鹼-骨材反應特性及抑制方法」,碩士論文,國立中央大學土木工程研究所,中壢(2001)。
5. 黃兆龍,混凝土性質與行為,詹氏書局,台北(1997)。
6. 邵國瑋,「卜作嵐材料抑制鹼-骨材反應之成效評估」,碩士論文,國立中央大學土木工程學系,中壢(2006)。
7. 邱薰頤,「蒸汽養護對鹼-骨材反應之影響」,碩士論文,國立中央大學土木工程學系,中壢(2006)。
8. 鄒睿嘉,「台灣東部骨材的鹼反應檢測與詮釋」,碩士論文,國立中央大學土木工程學系,中壢(2007)。
9. ASTM C227-97, “Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method),” Annual Book of ASTM Standards, Section 4, Vol.04.02 (2004).
10. ASTM C289-02, “Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate (Chemical Method),” Annual Book of ASTM Standards, Section 4, Vol.04.02 (2004).
11. ASTM C295-03, “Standard Guide for Petrographic Examination of Aggregate for Concrete,” Annual Book of ASTM Standards, Section 4, Vol.04.02 (2004).
12. ASTM C1260-01, “Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate (Mortar-Bar Method),” Annual Book of ASTM Standards, pp. 644-647 (2004).
13. ASTM C1293-01, “ Standard Test Method for Potential Concrete Aggregate by Determination of Length Change of Concrete due to Alkali-Silica Reaction,” Annual Book of ASTM Standards, pp. 648-653 (2004).
14. Adamopoulou, E., Pipilikaki, P., Katsiotis, M. S., Chaniotakis, M., and Katsioti, M., “How sulfates and increased temperature affect delayed ettringite formation (DEF) in white cement mortars,” Construction and Building Materials, Vol. 25, Issue 8, pp. 3583-3590 (2011).
15. Aubert, J. E., Escadeillas, G., and Leklou, N., “Expansion of five-year-old mortars attributable to DEF: Relevance of the laboratory studies on DEF,”
Construction and Building Materials, Vol. 23, Issue 12, pp. 3583-3585 (2009).
16. Barbarulo, R., Peycelon, H., and Leclercq, S., “Chemical equilibria between C-S-H and ettringite, at 20 and 85 °C,” Cement and Concrete Research, Vol. 37, Issue 8, pp. 1176-1181 (2007).
17. Barnes, B. D., Diamond, S., and Dolch, W. L., “The contact zone between portland cement paste and glass “aggregate” surfaces,” Cement and Concrete Research, Vol. 8, Issue 2, pp. 233-243 (1978).
18. Batic, O. R., Milanesi, C. A., Maiza, P. J., and Marfil, S. A., “Secondary ettringite formation in concrete subjected to different curing conditions,”Cement and Concrete Research, Vol. 30, Issue 9, pp. 1407-1412 (2000).
19. Boke, H., and Akkurt, S., “Ettringite formation in historic bath brick–lime plasters,” Cement and Concrete Research, Vol. 33, Issue 9, pp. 1457-1464 (1978).
20. Brunetaud, X., Divet, L., and Damidot, D., “Impact of unrestrained Delayed Ettringite Formation-induced expansion on concrete mechanical properties,” Cement and Concrete Research, Vol. 38, Issue 11, pp. 13443-1348 (2008).
21. Davies, G., and Oberholster, R. E., “Alkali-silica reaction products and their development,” Cement and Concrete Research, Vol. 18, Issue 4, pp. 621-635 (2008).
22. Detwiler, R. J., and Powers-Couche, L. J., “Effect of Ettringite on Frost Resistance,” Portland Cement Association Vol. 18, Issue 3, pp. 1-4 (2008).
23. Diamond, S., “Delayed ettringite formation — Processes and problems,” Cement and Concrete Composites, Vol. 18, Issue 3, pp. 205-215 (1996).
24. Diamond, S., “The relevance of laboratory studies on delayed ettringite formation to DEF in field concretes,” Cement and Concrete Research, Vol. 30, Issue 12, pp. 1987-1991 (2000).
25. Ekolu, S. O., Thomas, M. D. A., and Hooton, R. D., “Pessimum effect of externally applied chlorides on expansion due to delayed ettringite formation: Proposed mechanism,” Cement and Concrete Research, Vol. 36, Issue 4, pp. 688-696 (2000).
26. Ekolu, S. O., Thomas, M. D. A., and Hooton, R. D., “Implications of pre-formed microcracking in relation to the theories of DEF mechanism,” Cement and Concrete Research, Vol. 37, Issue 2, pp. 161-165 (2007).
27. Ekolu, S. O., Thomas, M. D. A., and Hooton, R. D., “Dual effectiveness of lithium salt in controlling both delayed ettringite formation and ASR concretes,” Cement and Concrete Research, Vol. 37, Issue 6, pp. 942-947 (2007).
28. Escadeillas, G., Aubert, J. E., Segerer, M., and Prince, W., “Some factors affecting delayed ettringite formation in heat-cured mortars,” Cement and Concrete Research, Vol. 37, Issue 10, pp. 1445-1452 (2007).
29. Famy, C., Scrivener, K. L., Atkinson, A., and Brough, A. R., “Influence of the storage conditions on the dimensional changes of heat-cured mortars,” Cement and Concrete Research, Vol. 31, Issue 5, pp. 795-803 (2001).
30. Famy, C., Scrivener, K. L., Atkinson, A., and Brough, A. R., “Effects of an early or a late heat treatment on the microstructure and composition of inner C-S-H products of Portland cement mortars,” Cement and Concrete Research, Vol. 32, Issue 2, pp. 269-278 (2002).
31. Feng, X., Thomas, M. D. A., Bremner, T. W., Folliard, K. J., and Fournier, B., “New observations on the mechanism of lithium nitrate against alkali silica reaction (ASR),” Cement and Concrete Research, Vol. 40, Issue 1, pp.
94-101 (2010).
32. Fernandes, I., “Composition of alkali-silica reaction products at different locations within concrete structures,” Materials Characterization, Vol. 60, Issue 7, pp. 655-668 (2009).
33. Fernandes, I., Noronha, F., and Teles, M., “Microscopic analysis of alkali– aggregate reaction products in a 50-year-old concrete,” Materials Characterization, Vol. 53, Issue 2-4, pp. 295-306 (2004).
34. Fernandes, I., Noronha, F., and Teles, M., “Examination of the concrete from an old Portuguese dam: Texture and composition of alkali–silica gel,” Materials Characterization, Vol. 58, Issue 11-12, pp. 1160-1170 (2007).
35. Fernandez-Jimenez, A., and Puertas, F., “The alkali–silica reaction in alkali-activated granulated slag mortars with reactive aggregate,” Cement and Concrete Research, Vol. 32, Issue 7, pp. 1019-1024 (2002).
36. Fu, Y., and Beaudoin, J. J., “A through solution mechanism for delayed ettringite formation in preexisting cracks in Portland cement mortar,” Journal of Materials Science Letters, Vol. 14, Issue 3, pp. 217-219 (1995).
37. Fu, Y., and Beaudoin, J. J., “Microcracking as a precursor to delayed ettringite formation in cement systems,” Cement and Concrete Research, Vol. 26, Issue 10, pp. 1493-1498 (1996).
38. Fu, Y., Ding, J., and Beaudoin, J. J., “Expansion of portland cement mortar due to internal sulfate attack,” Cement and Concrete Research, Vol. 27, Issue 9, pp. 1299-1306 (1997).
39. Fu, Y., Gu, P., Xie, P., and Beaudoin, J. J., “A kinetic study of delayed ettringite formation in hydrated portland cement paste,” Cement and Concrete Research, Vol. 25, Issue 1, pp. 63-70 (1995).
40. Glasser, F. P., “The role of sulfate mineralogy and cure temperature in delayed ettringite formation,” Cement and Concrete Composites, Vol. 18, Issue 3, pp. 187-193 (1996).
41. Grattan-Bellew, P. E., Beaudoin, J. J., and Vallee, V. G., “Effect of aggregate particle size and composition on expansion of mortar bars due to delayed ettringite formation,” Cement and Concrete Research, Vol. 28, Issue 8, pp. 1147-1156 (1998).
42. Hornain, H., Marchand, J., Ammouche, A., Commene, J. P., and Moranville, M., “Microscopic observation of cracks in concrete — A new sample preparation technique using dye impregnation,” Cement and Concrete Research, Vol. 26, Issue 4, pp. 573-583 (1996).
43. Idorn, G. M., “Innovation in concrete research—review and perspective,” Cement and Concrete Research, Vol. 35, Issue 1, pp. 3-10 (2005).
44. Katsioti, M., Patsikas, N., Pipilikaki, P., Katsiotis, N., Mikedi, K., and Chaniotakis, M., “Delayed ettringite formation (DEF) in mortars of white cement,” Construction and Building Materials, Vol. 25, Issue 2, pp. 900-905 (2011).
45. Kelham, S., “The effect of cement composition and fineness on expansion associated with delayed ettringite,” Cement and Concrete Composites, Vol. 18, Issue 3, pp. 171-179 (1996).
46. Kohler, S., Heinz, D., and Urbonas, L., “Effect of ettringite on thaumasite formation,” Cement and Concrete Research, Vol. 36, Issue 4, pp. 697-706 (2006).
47. Kwon, Y. J., “A study on the alkali-aggregate reaction in high-strength concrete with particular respect to the ground granulated blast-furnace slag effect,” Cement and Concrete Research, Vol. 35, Issue 7, pp. 1305-1313 (2006).
48. Lawrence, C. D., “Mortar expansions due to delayed ettringite formation. Effects of curing period and temperature,” Cement and Concrete Research, Vol. 25, Issue 4, pp. 903-914 (1995).
49. Leklou, N., Aubert, J. E., and Escadeillas, G., “Microscopic observations of samples affected by delayed ettringite formation (DEF),” Materials and Structures, Vol. 42, Issue 10, pp. 1369-1378 (1995).
50. Marusin, S. L., “Sample preparation — the key to SEM studies of failed concrete,” Cement and Concrete Composites, Vol. 17, Issue 4, pp. 311-318 (1995).
51. Mo, X., and Fournier, B., “Investigation of structural properties associated with alkali–silica reaction by means of macro- and micro-structural analysis,” Materials Characterization, Vol. 58, Issue 2, pp. 179-189 (2007).
52. Odler, I., and Chen, Y., “Effect of cement composition on the expansion of heat-cured cement pastes,” Cement and Concrete Research, Vol. 25, Issue 4, pp. 853-862 (1995).
53. Pavoine, A., Divet, L., and Fenouillet, S., “A concrete performance test for delayed ettringite formation: Part I optimisation,” Cement and Concrete Research, Vol. 36, Issue 12, pp. 2138-2143 (2006).
54. Pavoine, A., Divet, L., and Fenouillet, S., “A concrete performance test for delayed ettringite formation: Part II validation,” Cement and Concrete Research, Vol. 36, Issue 12, pp. 2144-2151 (2006).
55. Peng, C., Zhang, F. l., and Guo, Z. C., “Gypsum crystallization and potassium chloride regeneration by reaction of calcium chloride solution with potassium sulfate solution or solid,” Transactions of Nonferrous Metals Society of China, Vol. 20, Issue 4, pp. 712-720 (2010).
56. Sahu, S., and Thaulow, N., “Delayed ettringite formation in Swedish concrete railroad ties,” Cement and Concrete Research, Vol. 34, Issue 9, pp. 1675-1681 (2004).
57. Shao, Y., Lynsdale, C. J., Lawrence, C. D., and Sharp, J. H., “Deterioration of heat-cured mortars due to the combined effect of delayed ettringite formation and freeze/thaw cycles,” Cement and Concrete Research, Vol. 27,
Issue 11, pp. 1761-1771 (1997).
58. Shimada, Y., and Young, J. F., “Thermal stability of ettringite in alkaline solutions at 80 °C,” Cement and Concrete Research, Vol. 34, Issue 12, pp. 2261-2268 (2004).
59. Siedel, H., Hempel, S., and Hempel, R., “Secondary ettringite formation in heat treated portland cement concrete: Influence of different W/C ratios and heat treatment temperatures,” Cement and Concrete Research, Vol. 23, Issue 2, pp. 453-461 (1993).
60. Stark, J., and Bollmann, K., “Delayed Ettringite Formation in Concrete,” ZKG International, Vol. 53, Issue 4, pp. 232-240 (2000).
61. Tambelli, C. E., Schneider, J. F., Hasparyk, N. P., and Monteiro, P. J. M., “Study of the structure of alkali–silica reaction gel by high-resolution NMR spectroscopy,” Journal of Non-Crystalline Solids, Vol. 352, Issue 32-35, pp. 3429-3436 (2006).
62. Taylor, H. F. W., Famy, C., and Scrivener, K. L., “Delayed ettringite formation,” Cement and Concrete Research, Vol. 31, Issue 5, pp. 683-693 (2001).
63. Thaulow, N., Jakobsen, U. H., and Clark, B., “Composition of alkali silica gel and ettringite in concrete railroad ties: SEM-EDX and X-ray diffraction analyses,” Cement and Concrete Research, Vol. 26, Issue 2, pp. 309-318 (1996).
64. Thomas, M., Folliard, K., Drimalas, T., and Ramlochan, T., “Diagnosing delayed ettringite formation in concrete structures,” Cement and Concrete Research, Vol. 38, Issue 6, pp. 841-847 (2008).
65. Tosun, K., “Effect of SO3 content and fineness on the rate of delayed ettringite formation in heat cured Portland cement mortars,” Cement and Concrete Composites, Vol. 28, Issue 9, pp. 761-772 (2006).
66. Yang, R., Lawrence, C. D., Lynsdale, C. J., and Sharp, J. H., “Delayed ettringite formation in heat-cured Portland cement mortars,” Cement and Concrete Research, Vol. 29, Issue 1, pp. 17-25 (1999).
指導教授 田永銘(Yong-Ming Tien) 審核日期 2012-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明