博碩士論文 993204034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.142.98.60
姓名 楊銘彥(Ming-Yen Yung)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米鈀觸媒擔載於氧化錳-氧化鈰於甲苯完全氧化反應之應用
(The Catalytic Properties of Pd/MnOx-CeO2 on Destruction of Toluene)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 氧化錳-氧化鈰觸媒對揮發性有機廢氣焚化有良好活性,奈米鈀/氧化鈰觸媒對於甲苯完全氧化反應有很高的活性。因此,吾人製備鈀/氧化錳-氧化鈰觸媒以期達到更佳的反應活性。在本研究中,製備一系列不同錳/(錳+鈰)比例的鈀/氧化錳-氧化鈰觸媒。先以共沉澱法及氧化還原沉澱法製備氧化錳-氧化鈰,再以初濕含浸法製備0.5 wt. %之鈀觸媒。觸媒鑑定方面,主要是以X光繞射儀(XRD),穿透式電子顯微鏡(TEM),高解析度穿透式電子顯微鏡(HRTEM),X光電子能譜儀(XPS)與程溫還原系統(TPR),進行鑑定與分析。並使用甲苯作為本研究觸媒焚化之指標物。反應物甲苯之進料濃度為8.564 g/m3 (2085 ppm),空間流速為10,000 h-1。TEM與HRTEM圖中顯示鈀的顆粒大小約為3到5奈米,且均勻分布於擔體上,其結果與XRD結果一致。由XPS中可發現在適當的錳/(錳+鈰)比例下,有助於鈀元素態與高價錳的比例增加,同時也增進其反應活性。由氧化還原沉澱法製備之氧化錳-氧化鈰擔體較共沉澱法製備之擔體有更大的體積、孔洞體積、表面積、更高的表面錳含量及錳價態,且有特殊的棒狀型顆粒,故擁有更好的反應活性。從活性測試中,鈀/氧化錳-氧化鈰觸媒之反應活性優於鈀/氧化錳、鈀/氧化鈰混合觸媒,證明鈰與錳之間有好的交互作用。實驗結果顯示鈀/氧化錳-氧化鈰觸媒之反應活性優於單一擔體之觸媒,是因為氧化錳與鈀與氧化鈰間有協同作用使得反應活性佳。對於甲苯完全氧化反應,鈀/氧化錳-氧化鈰觸媒是非常好的。
摘要(英) MnOx-CeO2 was reported to be active for VOCs combustion and Pd/CeO2 were reported to be very active to destruct toluene from this lab. Therefore, combination of MnOx-CeO2 and palladium is a potential candidate to achieve a catalyst with high activity. In this study, a series of Pd/MnOx-CeO2 catalysts with various ratios of Mn/(Mn + Ce) were prepared. MnOx-CeO2 supports were prepared by co-precipitation method and redox-precipitation method, Pd was loaded by incipient-wetness impregnation method. The Pd loadings in all samples were fixed at 0.5 wt.%. The catalysts were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and temperature-programmed reduction (TPR). The catalysts were tested for total oxidation of toluene. The feed concentration of toluene was 8.564 g/m3 (2085 ppm), with GHSV= 10,000 h-1. The TEM and HRTEM images showed that Pd particle sizes were 3–5 nm and well-dispersed on the support. This result is consistent with the XRD studies. XPS study indicated that the suitable ratio of Mn/(Mn + Ce) able increased the proportion of metallic palladium, the content of high valance state manganese and the catalytic activity. Redox-precipitation prepared MnOx-CeO2 supports have a larger pore volume, surface area, higher manganese valance state, and higher surface manganese amount compare with MnOx-CeO2 prepared by CP method. Moreover MnOx-CeO2 prepared by RP method had a special tube-like shape, so that Pd/MnOx-CeO2 RP had a higher activity. Pd/MnOx-CeO2 catalyst was better than the physically-mixed Pd/MnOx and Pd/CeO2 catalyst, which indicates that there is a strong interaction between ceria and manganese. In conclusion, Pd/MnOx-CeO2 catalysts were superior to Pd/MnOx and Pd/CeO2 catalysts due to the synergetic effect between Ce and Mn. Pd/MnOx-CeO2 catalysts are very promising for toluene destruction.
關鍵字(中) ★ 甲苯
★ 氧化錳-氧化鈰
★ 氧化鈰
★ 氧化錳
★ 鈀
★ 觸媒焚化
關鍵字(英) ★ CeO2
★ MnOx
★ MnOx-CeO2
★ toluene
★ Palladium
★ Catalytic combustion
論文目次 摘要 i
Abstract ii
Table of Contents iv
List of Figures viii
List of Tables xi
Chapter 1. Introduction 1
Chapter 2. Literature review 3
2.1 Introduction of VOCs and toluene 3
2.2 VOC control technologies 3
2.2.1 Adsorption 4
2.2.2 Condensation 4
2.2.3 Thermal oxidation 4
2.2.4 Catalytic oxidation 4
2.3 Preparation method 5
2.3.1 Impregnation method 5
2.3.2 Co-precipitation method 6
2.3.3 Deposition-precipitation method 6
2.3.4 Colloidal method 7
2.3.5 CVD method 7
2.4 CeO2 7
2.5 Applications of palladium catalysts 9
2.5.1 CO oxidation 10
2.5.2 NO-CO reaction 11
2.5.3 Water-gas-shift reaction 11
2.5.4 Three-way catalysts 11
2.6 Applications of manganese catalysts 12
2.6.1 CO oxidation 12
2.6.2 Water-gas-shift reaction 12
2.6.3 Fischer-Tropsch synthesis 13
2.6.4 Formation of aromatic aldehyde by hydrogenation 13
2.7 Toluene oxidation 14
2.7.1 Support effect 16
2.7.2 Calcined Temperature effect 17
2.7.3 Effect of pretreatment method 18
2.7.4 Reaction mechanism 18
2.8 Objectives 19
Chapter 3. Experimental 20
3.1 Chemicals 20
3.2 Catalyst preparation 20
3.2.1 Preparation of supports 20
3.2.2 Preparation of palladium catalysts 22
3.3 Characterization 22
3.3.1 ICP-MS 23
3.3.2 XRD 23
3.3.3 N2-sorption 23
3.3.4 TEM and HRTEM 24
3.3.5 XPS 24
3.3.6 H2-TPR 25
3.4 Toluene oxidation reaction 25
Chapter 4. Catalytic combustion of toluene on Pd/CeO2–MnOx catalysts 28
4.1 Introduction 28
4.2 Result 30
4.2.1 ICP-MS 30
4.2.2 XRD 30
4.2.3 N2-sorption 33
4.2.4 TEM and HRTEM 34
4.2.5 XPS 40
4.2.6 H2-TPR 48
4.3 Catalytic activity on toluene oxidation reaction 50
4.4 Discussion 52
4.4.1 Effect of different Mn/(Mn + Ce) ratio in support 52
4.4.2 Properties of Pd on different supports 53
4.4.3 Mechanism during toluene oxidation reaction 55
4.5 Costs of catalysts 57
4.6 summarization of past catalysts 57
4.7 Conclusion 59
Chapter 5. The catalytic properties of redox-pricipitation catalysts Pd/CeO2–MnOx on oxidation of toluene 60
5.1 Introduction 60
5.2 Results 61
5.2.1 ICP-MS 61
5.2.2 XRD 62
5.2.3 N2-sorption 65
5.2.4 TEM 66
5.2.5 XPS 69
5.2.6 H2-TPR 77
5.3 Catalytic activity on toluene oxidation reaction 79
5.4 Discussion 82
5.4.1 Influence of preparation method 82
5.4.2 Effects of different Mn content in support 84
5.4.3 Properties of Pd on different supports 85
5.5 Cost of catalysts 87
5.6 Conclusion 88
Chapter 6. Summary 89
References 91
Appendix 104
參考文獻 Abecassis-Wolfovich, M., Landau, M. V., Brenner, A., Herskowitz, M., “Low-temperature combustion of 2, 4, 6-trichlorophenol in catalytic wet oxidation with nanocasted Mn-Ce-oxide catalyst”, J. Catal. 247 (2007) 201-213.
Arena, F., Trunfio, G., Fazio, B., Negro, J., Spadaro, L., “Nanosize Effects, Physicochemical Properties, And Catalytic Oxidation Pattern of the Redox- Precipitated MnCeOx System”, J. Phys. Chem. C 113 (2009) 2822-2929.
Arena, F., Trunfio, G., Negro, J., Spadaro, L., “Optimization of the MnCeOx system for the catalytic wet oxidation of phenol with oxygen (CWAO)”, Appl. Catal. B: Environ. 85 (2008) 40-47.
Azalim, S., Franco, M., Brahmi, R., Giraudon, J. M., Lamonier, J. F., “Removal of oxygenated volatile organic compounds by catalytic oxidation over Zr-Ce-Mn catalysts”, J. Hazard. Mater. 188 (2011) 422-427.
Bai, L., Xiang, H. W., Li, Y. W., Han, Y. Z., Zhong, B., “Slurry phase Fischer–Tropsch synthesis over manganese-promoted iron ultrafine particle catalyst”, Fuel 81 (2002) 1577-1581.
Batista, J., Pintar, A., Gomilsek, J. P., Kodre, A., Bornette, F., “On the structural
characteristics of γ-alumina-supported Pd–Cu bimetallic catalysts”, Appl. Catal. A: Gen. 217 (2001) 55.
Bay, A., Royer, S., Labrugère, C., Valencia, H., Marécot, P., Tatibouët, J. M., Duprez, D., “Effect of palladium on the reducibility of Mn based materials: correlation with methane oxidation activity”, Phy. Chem. Chem. Phys. 10 (2008) 5983-5992.
Bedia, J., Rosas, J. M., Rodriguez-Mirasol, J., Cordero, T., “Pd supported on mesoporous activated carbons with high oxidation resistance as catalysts for toluene oxidation”, Appl. Catal. B: Environ. 94 (2010) 8-18.
Bickford, E. S., Velu, S., Song, C., “Nano-structured CeO2 supported Cu-Pd bimetallic catalysts for the oxygen-assisted water–gas-shift reaction”, Catal. Today. 99 (2005) 347-357.
Blance, G., Cauqui, M. A., Delgado, J. J., Gaitayries, A., Pérez-Omil, J. A., Rodríguez-Izquierdo, J. M., “Preparation and characterization of Ce-Mn-O composites with applications in catalytic wet oxidation processes”, Surf. Interface Anal. 36 (2004) 752-755.
Brun, M., Berthet, A., Bertolini, J. C., “XPS, AES and Auger parameter of Pd and PdO”, J. Electron Spectrosc. Relat. Phenom. 104 (1999) 55-60.
Chen, A. M., Xu, H. L., Yue, Y. H., Hua, W. M., Shen, W., Gao, Z., “Hydrogenation of methyl benzoate to benzaldehyde over manganese oxide catalysts prepared from Mg/ Mn/ Al hydrotalcite-like compounds”, Appl. Catal. A: General 274 (2004) 101-109.
Chen, A. M., Xu, H. L., Yue, Y. H., Hua, W. M., Shen, W., Gao, Z., “Support effect in hydrogenation of methyl benzoate over supported manganese oxide catalysts”, J. Mole. Catal. A: Chemical 203 (2003) 299-306.
Chen, H. Y., Sayari, A., Adnot, A., Larachi, F., “Composition–activity effects of Mn–Ce–O composites on phenol catalytic wet oxidation”, Appl. Catal. B: Environ. 32 (2001) 195-204.
Chen, M., Ma, Y., Li, G. F., Zheng, X. M., “Support effect, thermal stability, and structure feature of toluene combustion catalyst”, Catal. Comm. 9 (2008) 990-994.
Chen, S. H., “Complete oxidation of toluene by Pd/Ce1-xZrXO2 and Pt introduced Pd/CeO2 catalysts”, thesis.lib.ncu.edu.tw (2009).
Chen, Z. and Gao, Q., Velu, S., “Enhanced carbon monoxide oxidation activity over gold–ceria nanocomposites” , Appl. Catal. B: Environ. 84(2008) 790-796.
Craciun, R., “Structure/activity correlation for unpromoted and CeO2-promoted MnO2/SiO2 catalysts” , Catal. Lett. 55(1988) 25-31.
Delimaris, D., Ioannides, T., “VOC oxidation over MnOx–CeO2 catalysts prepared by a combustion method”, Appl. Catal. B: Environ. 84 (2008) 303-312.
Dimitratos, N., Lopez-Sanchez, J. A., Anthonykutty, J. M., Brett, G., Carley, A.F., Tiruvalam, R.C., Herzing, A. A., Kiely, C. J., Knight, D.W., Hutchings, G. J., “Oxidation of glycerol using gold–palladium alloy-supported nanocrystals”, Phys. Chem. Chem. Phys. 11 (2009) 4952-4961.
Edward, J. K., Solsona, B. E., Landon, P., Carley, A. F., Herzing, A., Kiely, C. J., Hutchings, G. J., “Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au-Pd catalysts”, J. Catal. 236 (2005) 69-79.
Farrauto, R. J., Heck, R. M., “Catalytic converters: state of the art and perspectives”, Catal. Today 51 (1999) 351-360.
Feio, L. S. Escritori, J. C., Noronha, F. B., Hori, C. E., “Combustion of butyl carbitol using supported palladium catalysts”, Catal. Lett. 120 (2008) 229-235.
Ferrandon, M., Carnö, J., Järas, S., Björnbom, E., “Total oxidation catalysts based on manganese or copper oxides and platinum or palladium I: Characterisation”, Appl. Catal. A: Gene. 180 (1999) 141-151.
Fortunato, G., Oswald, H. R., Reller, A., “Spinel-type oxide catalysts for low temperature CO oxidation generated by use of an ultrasonic aerosol pyrolysis process” J. Mater. Chem., 11 (2001) 905-911.
Gelbein, A. P., Hansen, R., US patent 4,585,899 (1986).
Gennequin, C., Lamallem, M., Cousin, R., Siffert, S., Idakiev, V., Tabakova, T., Aboukaı‥s, A., Su, B. L., “Total oxidation of volatile organic compounds on Au/Ce–Ti–O and Au/Ce–Ti–Zr–O mesoporous catalysts”, J. Mater. Sci. 44 (2009) 6654-6662.
Giraudon, J.M., Elhachimi, A., Wyrwalski, F., Siffert, S., Aboukaı’s, A., Lamonier, J. F., Leclercq, G., “Studies of the activation process over Pd perovskite-type oxides used for catalytic oxidation of toluene”, Appl. Catal. B: Environ.75 (2007) 157-166.
Golunski, S. E. H., Hatcher, A., Rajaram, R. R., Truex, T. J., “Origins of low-temperature three-way activity in Pt/ CeO2”, Appl. Catal. B:Environ. 5 (1995) 367-376.
Gonzalez-velasco, J. R., Aranzabal, A., Gutierrez-Ortiz, J. I., Lopez-Fonseca. R., Gutierrez-Ortiz, M. A., “Activity and product distribution of alumina supported platinum and palladium catalysts in the gas-phase oxidative decomposition of chlorinated hydrocarbons” , Appl. Catal. B: Environ. 19 (1998) 189-197.
Goponath, R., Lingaiah, N., Babu, N. S., Suryanarayana, I., Prasad, P. S. S., Obuchi, A., “A highly active low Pd content catalyst synthesized by deposition–precipitation method for hydrodechlorination of chlorobenzene”, J. Mole. Catal. A: Chemical, 223 (2004) 289-293
Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J., Delmon, B., “Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4”, J. Catal. 144 (1993) 175.
Hosseini, M., Siffert, S., Cousin, R., Aboukais, A., Hadj-Sadok, Su, Z., B. L., “Total
oxidation of VOCs on Pd and/or Au supported on TiO2/ZrO2 followed by ‘‘operando’’ DRIFT”, C. R. Chimie. 12 (2009) 654-659.
Hosseini, M., Siffert, S., Tidahy, H. L., Cousin, R., Lamonier, J. -F., Aboukais, A., Vantomme, A., Roussel, M., Su, B. -L., “Promotional effect of gold added to palladium supported on a new mesoporous TiO2 for total oxidation of volatile organic compounds”, Catal. Today 122 (2007) 391-396.
Ihm, S.K., Du, Y., Kim, D. C., Jeong, K.E., “Low-temperature deactivation and oxidation state of Pd/γ-Al2O3 catalysts for total oxidation of n-hexane”, Catal.Today. 93-95 (2004) 149-154.
Imamura, S., Shono, M., Okamoto, N., Hamada, A., Ishida, S., “Effect of cerium on the mobility of oxygen on manganese oxides”, Appl. Catal. A: Gen. 142 (1996) 279-288.
Karita, R., Kusaba, H., Sasaki, K., Teraoka, Y., “Synthesis, characterization and catalytic activity for NO–CO reaction of Pd–(La, Sr)2MnO4 system”, Catal. Today. 119 (2007) 83-87.
Kim, H. S., Kim, T. W., Koh, H.L., Lee, S. H., Min, B. R., “Complete benzene oxidation over Pt-Pd bimetal catalyst supported on γ-alumina: influence of Pt-Pd ratio on the catalytic activity”, Appl. Catal. A:Gen. 280 (2005) 125-131.
Kim, S. C., Shim, W. G, “Properties and performance of Pd based catalysts for catalytic oxidation of volatile organic compounds”, Appl. Catal. B: Environ. 92 (2009) 429-436.
Krämer, M., Schmidt, T., Stöwe, Maier, W.F., “Structural and catalytic aspects of sol-gel derived copper manganese oxides as low-temperature CO oxidation catalyst”, Appl. Cat. A: General 302 (2006) 257-263.
Li, H. J., Qi, G. S., Zhang X. J., Huang, X. M. Li, W., Shen, W. J. “Low-temperature oxidation of ethanol over a Mn0.6Ce0.4O2 mixed oxide”, Appl. Catal. B: Environ. 103 (2011) 54-61.
Li, T., Lei, Y., He, Y., Teng, B., Luo, M., Zhao, L., “Catalytic combustion of toluene on Pd/CexLa1− xO2/ monolith catalysts”, React. Kinet. Mech. Cat 103 (2011) 419-429.
Liebscher, H., “Economic solutions for compliance to the new European VOC Directive”, Prog. Org. Coat. 40 (2000) 75-83.
Liotta, L. F., “Catalytic oxidation of volatile organic compounds on supported noble metals”, Appl. Catal. B: Environ. 100 (2010) 403-412.
Lopez-Sanchez, J. A., Dimitratos, N., Miedziak, P., Ntainjua, E., Edwards, J. K., Morgan, D., Carley, A.F., Tiruvalam, R., Kiely, C. J., Hutchings, G. J., “Au–Pd supported nanocrystals prepared by a sol immobilization technique as catalysts for selective chemical synthesis”, Phys. Chem. Chem. Phys. 10 (2008) 1921-1930.
Luo, M. F., He, M., Xie, Y. L., Fang, P., Jin, L. Y., “Toluene oxidation on Pd catalysts supported by CeO2-Y2O3 washcoated cordierite honeycomb”, Appl. Catal. B: Environ. 69 (2007) 213-218.
Morikawa, A., Suzuki, T., Kikuta, K., Suda, A., Shinjo, H., “A new concept in high performance ceria–zirconia oxygen storage capacity material with Al2O3 as a diffusion barrier”, Appl. Catal. B: Environ. 78 (2008) 210-221.
Narui, K., Yata, H., Furuta, K., Nishida, A., Kohtoku, Y., Matsuzaki, T., “Effects of addition of Pt to PdO/Al2O3 catalyst on catalytic activity for methane combustion and TEM observations of supported particles”, Appl. Catal. A: Gen. 179 (1999) 165-173.
Okumura, K., Kobayashi, T., Tanaka, H., Niwa, M., “Toluene combustion over palladium supported on various metal oxide supports”, Appl. Catal. B: Environ. 44 (2003) 325-331.
Omil, J. A. P., Delgado, J. J., Ouahbi, W., Hungría, A. B., Browning, N., Cauqui, M. A., Izquierdo, J. M. R., Calvino, J. J., “Electron Microscopy Investigations of Nanostructured Ce-Mn Oxides for Catalytic Wet Oxidation”, J. Phys. Chem. C 114 (2010) 8981-8991.
O’Shea, V. A. D. L. P., Álvarez-Galván, M. C., Fierro, J. L. G., Arias., P. L., “Influence of feed composition on the activity of Mn and PdMn/ Al2O3 catalysts for combustion of formaldehyde methanol”, Appl. Catal. B: Environ. 57 (2005) 191-199.
Otsuka, K., Wang, Y., Nakamura, M., “Direct conversion of methane to synthesis gas through gas–solid reaction using CeO2–ZrO2 solid solution at moderate temperature”, Appl. Catal. A: Gen. 183 (1999) 317-324.
Papaefthimiou, P., Ioannides, T., Verykios, X. E., “Combustion of non-halogenated volatile organic compounds over group VIII metal catalysts”, Appl. Catal. B: Environ. 13 (1997) 175-184.
Pengpanich, S., Meeyoo, V., Rirksomboon, T., Bunyakiat, K., “Catalytic oxidation of methane over CeO2-ZrO2 mixed oxide solid solution catalysts prepared via urea hydrolysis”, Appl. Catal. A: Gen. 234 (2002) 221-233.
Pennline, W. H., Zarochak, F. M., Stencel, M. J., Diehl, R. J., “Activation and promotion studies in a mixed slurry reactor with an iron-manganese Fischer-Tropsch catalyst”, Ind. Eng. Chem. Res. 26 (1987) 595-601.
Reddy, B. M., Bharali, P., Saikia, P., Thrimurthulu, G., Yamada, Y., Kobayashi, T., “Thermal Stability and Dispersion Behavior of Nanostructured CexZr1-xO2 Mixed Oxides over Anatase-TiO2: A Combined Study of CO Oxidation and Characterization by XRD, XPS, TPR, HREM, and UV-Vis DRS”, Ind. Eng. Chem. Res. 48 (2009) 453.
Rodrigues, A. C. C., “Metallic mixed oxides (Pt, Mn or Cr) as catalysts for the gas-phase toluene oxidation”, Catal. Comm. 8 (2007) 1227-1231.
Schmieg, S. J. and Belton, D. N., “Effect of hydrothermal aging on oxygen storage/ release and activity in a commercial automotive catalyst”, Appl. Catal. B. Environ., 6 (1995) 127-144.
Schubert, M. M., Hackenberg, S., van Veen, A. C., Muhler, M., Plzak, V., Behm, R. J., “CO Oxidation over Supported Gold Catalysts—Inert and Active Support Materials and Their Role for the Oxygen Supply during Reaction”, J. Catal. 197 (2001) 113-122.
Scire, S., Minico, S., Crisafulli, C., Satriano, C., Pistone, A., “Catalytic combustion of volatile organic compound on gold/ cerium oxide catalysts”, Appl. Catal. B:Environ. 40 (2003) 43-49.
Shan, W. J., Ma, N., Yang, J., Dong, X. W., Liu, C., Wei, L.L., “Catalytic oxidation of soot particulates over MnOx-CeO2 oxides prepared by complexation-combustion method”, J. Nat. Gas Chem.19 (2010) 86-90.
Shen, W. J., Ichihashi, Y., Ando, H., Okumura, M., Haruta. M., Matsumura., Y., “Influence of palladium precursors on methanol synthesis from CO hydrogenation over Pd/CeO2 catalysts prepared by deposition-precipitation method”, Appl. Catal. A: General 217 (2001) 165-172.
Shi, L. M., Chu, W., Qu, F. F., Hu, J. Y., Li, M. M., “Catalytic performance for methane combustion of supported Mn-Ce mixed oxides”, J. Rare Earth 26 (2008) 836-840.
Shi, L. M., Chu, W., Qu, F. F., Luo, S. H., “Low-temperature catalytic combustion of methane over MnOx-CeO2 mixed oxide catalysts: Effect of preparation method”, Catal. Lett. 113 (2007) 59-64.
Song, C., Chen, M., Ma, C. A., Zheng, X. M., “Pd‐Mn/ Stainless Steel Wire Mesh Catalyst for Catalytic Oxidation of Toluene, Acetone and Ethyl Acetate”, Ch. J. Chem. 27 (2009) 1903-1906.
Tanaka, T., Utaka, T., Kikuchi, R., Sasaki, K., Eguchi, K., “Water gas shift reaction over Cu-based mixed oxides for CO removal from the reformed fuels”, Appl. Catal. A: General 242 (2003) 287-295.
Tanaka, T., Utaka, T., Kikuchi, R., Takeguchi, T., Sasaki, K., Eguchi, K., “Water gas shift reaction for the reformed fuels over Cu MnO catalysts prepared via spinel-type oxide”, J. Catal. 215 (2003) 271-278.
Tang, X.F., Li, Y. G., Huang, X. M., Xu, Y. D., Zhu, H. Q., Wang J. G., Shen, W. J., “MnOx–CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature”, Appl. Catal. B: Environ. 62 (2006) 265-273.
Tidahy, H.L., Hosseni, M., Siffert, S., Cousin, R., Lamonier, J. -F., Aboukaїs, A., Su, B. -L., Giraudon, J. –M., Leclercq, G., “Nanostructured macro-mesoporous zirconia impregnated by noble metal for catalytic total oxidation of toluene”, Catal. Today 137 (2008) 335-339.
Tidahy, H.L., Siffert, S., Wyrwalski, F., Lamonier, J. -F., Aboukaїs, A., “Catalytic activity of copper and palladium based catalysts for toluene total oxidation”, Catal. Today 119 (2007) 317-320.
Wang, X. Y., Kang, Q., Li, D., “Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts”, Appl. Catal. B: Environ. 86 (2009) 166-175.
Waśkowska, A., Gerward, L., Olsen, J. S., Talik, E., “CuMn2O4: properties and the high-pressure induced Jahn-Teller phase transition”, J. Phys.: Condenns. Katter 13 (2001) 2549-2562.
Widmann, D., Liu, Y., Schuth, F., Behm, R. J., “Support effects in the Au-catalyzed CO oxidation–Correlation between activity, oxygen storage capacity, and support reducibility”, J. Catal. 276 (2010) 292-305.
Wu, X. D., Liang, Q., Weng, D., Fan, J., Ran, R., “Synthesis of CeO2-MnOx mixed oxides and catalytic performance under oxygen-rich condition”, Catal. Today 126 (2007) 430-435.
Wu, X. D., Liu, S., Weng, D., Lin, F., Ran, R., “MnOx-CeO2-Al2O3 mixed oxides for soot oxidation: Activity and thermal stability”, J. Harzard. Meter. 187 (2011) 283-290.
Xiao, L. H., Sun, K. H., Xu, X. L., Li, X. N., “Low-temperature catalytic combustion of methane over Pd/CeO2 prepared by deposition-precipitation method”, Catal. Comm. 6 (2005) 796-801.
Yang, Y., Xiang, H. W., Xu Y. Y., Bai L., Li, Y. W., “Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer–Tropsch synthesis”, Appl. Catal. A: General 266 (2004) 181-194.
Yang, Y., Xiang, H. W., Tian L., Wang, H., Zhang., C. H., Tao, Z. T., Xu, Y. Y., Zhong, B., Li, Y. W., “Structure and Fischer–Tropsch performance of iron–manganese catalyst incorporated with SiO2”, Appl. Catal. A: General 284 (2005) 105-122.
Yashnik, S. A., Ismagilov, Z. R., Kuznetsov, V. V., Ushakov, V. V., Rogov, V. A., Ovsyannikova, I. A., “High-temperature catalysts with a synergetic effect of Pd and manganese oxides”, Catal. Today 117 (2006) 525-535.
Zhang, C. H., Yang, Y., Teng, B. T., Li, T. Z., Zheng, H. Y., Xiang, H. W., Li, Y. W., “Study of an iron-manganese Fischer–Tropsch synthesis catalyst promoted with copper”, J. Catal. 237 (2006) 405-415.
Zhang, G., Wang, Y., Wang, X., Chen, Y., Zhou, Y., Tang, Y., Lu, L., Bao, J., Lu, T., “Preparation of Pd–Au/C catalysts with different alloying degree and their electrocatalytic performance for formic acid oxidation”, Appl. Catal. B: Environ. 102 (2011) 614-619.
Zhang, Q., Zhao, L., Teng, B., Xie, Y., Yue, L., “Pd/Ce0.8Zr0.2O2/Substrate Monolithic Catalyst for Toluene Catalytic Combustion”, Chin J Catal. 29 (2008) 373-378.
Zhao, L., Zhang, Q., Luo, M., Teng, B., Xie, Y., “Toluene Combustion over Pd-Ce0.4 Zr0.6 O2 Directly Washcoated Monolithic Catalysts”, J. Rare Earths 25 (2007) 715-720.
Zhou, R., Zhao, B., Yue, B., “Effects of CeO2-ZrO2 present in Pd/Al2O3 catalysts on the redox behavior of PdOx and their combustion activity”, Applied Surface Science 254 (2008) 4701-4707.
Zou, Z. Q., Meng, M., Zha, Y. Q., “Article Surfactant-Assisted Synthesis, Characterizations, and Catalytic Oxidation Mechanisms of the Mesoporous MnOx−CeO2 and Pd/MnOx−CeO2 Catalysts Used for CO and C3H8 Oxidation”, J. Phys. Chem. C 114 (2010) 468-477.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2012-6-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明