參考文獻 |
[1] V. Ponec, “On the role of promoters in hydrogenateon on metals: α,β-unsaturated aldehydes and ketones,” Appl. Catal. A: Gen. 149 (1997) 27-48.
[2] N. Mahata, F. Goncalves, M. Fernando, R. Pereira and J. L. Figueiredo, “Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst,” Appl. Catal. A: Gen. 339 (2008) 159-168.
[3] D. Goupil, P. Fouilloux and R. Maurel, “Activity and selectivity of Pt-Fe/C alloys for the liquid phase hydrogenation of cinnamaldehyde to cinnamyl alcohol,” React. Kinet. Catal. Lett. 35 (1987) 185-193.
[4] M. A. Vannice and B. Sen, “Metal-support effects on the intramolecular selectivity of crotonaldehyde hydrogenation over platinum,” J. Catal. 115 (1989) 65-78.
[5] H. Yoshitake and Y. Iwasawa, “Active sites and reaction mechanisms for deuteration of acrolein on TiO2-, Y2O3-, ZrO2-, CeO2 and Na/SiO2- supported platinum catalysts,” J. Chem. Soc. Faraday Trans. 88 (3) (1992) 503-510.
[6] A. Sepúlveda-Escribano, F. Coloma and F. Rodríguez-Reinoso, “Promoting effect of ceria on the gas phase hydrogenation of crotonaldehyde over platinum catalysts,” J. Catal. 178 (1998) 649-657.
[7] 李東穎, “Pd/hydrotalcite觸媒於苯酚一步合成環己酮之研究,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (1997).
[8] 蔡俊煌, “Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2002).
[9] 廖志偉, “一步合成甲基異丁基酮之多功能觸媒研究-Pd(Ni)/ hydrotalcite,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (1996).
[10] C. T. Chang, B. J. Liaw, C.T. Huang and Y. Z. Chen, “Preparation of Au/MgxAlO hydrotalcite catalysts for CO oxidation,” Appl. Catal., A: Gen. 332 (2007) 216-224.
[11] 游焜竣, “Au/MgxAlO-hydrotalcite觸媒於α,β-不飽和醛選擇性氫化反應之研究,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2008).
[12] 吳佩珊, “Au觸媒於α,β-不飽和醛選擇性氫化反應之擔體效應研究,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2010).
[13] P. Claus, “Selective hydrogenation of α,β-unsaturated aldehydes and other C=O and C=C bonds containing compounds,” Top. Catal. 5 (1998) 51-62.
[14] 王駿, “Ag/Mg2AlO-hydrotalcite觸媒於α,β-不飽和醛選擇性氫化反應之研究,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2011).
[15] M. E. Eberhart, M. M. Donovan and R. A. Outlaw, “Ab initio calculations of oxygen diffusivity in Group IB transition metals,” Phys. Rev. B: Condens. Matter Mater. Phys. 46 (1992) 12744-12747.
[16] L. Gang, B. G. Anderson, J. V. Grandelle and R. A. Santen, “Low temperature selective oxidation of ammonia to nitrogen on silver-based catalysts,” Appl. Catal. B: Environ. 40 (2003) 101-110.
[17] O. Blank, German Patent 228 (1910) 697.
[18] T. E. Lefort, United States Patent (1935) US1998878.
[19] S. R. Seyedmonir, J. K. Plischke, M. A. Vannice and H.W. Young, “Ethylene oxidation over small silver crystallines,” J. Catal. 123 (1990) 534-549.
[20] V. I. Bukhtiyarov, I. P. Prosvirin and R. I. Kvon, “Study of reactivity of oxygen states adsorbed at a silver surface towards C2H4 by XPS, TPD and TPR,” Surf. Sci. 320 (1994) 47-50.
[21] B. Hammer and J. K. Norskov, “Electronic factors determining the reactivity of metal surfaces,” Surf. Sci. 343 (1995) 211-220.
[22] A. B. Mohammad, I. V. Yudanov, K. H. Lim, K. M. Neyman and N. Rsch, “Hydrogen activation on silver: A computational study on surface and subsurface sxygen species,” J. Phys. Chem. C 112 (2008) 1628-1635.
[23] A. Montoya, A. Schlunke and B. S. Haynes, “Reaction of hydrogen with Ag(111): binding states, minimum energy paths and kinetics,” J. Phys. Chem. B 110 (2006) 17145-17154.
[24] R. J. Mikovsky, M. Boudart and H. S. Taylor, “Hydrogen-deuterium exchange on copper, silver, gold and alloy surface,” J. Am. Chem. Soc. 76 (1954) 3814-3819.
[25] V. Ponec and G. C. Bond, “Catalysis by Metals and Alloys,” Elsevier: Amsterdam (1996)
[26] A. Metcalfe and M. W. Rowden, “Hydrogenation of nitrobenzene over palladium-silver catalysts,” J. Catal. 22 (1971) 30-34.
[27] C. Fragalea, M. Garganoa, N. Ravasioa, M. Rossi1 and I. Santoa, “Selective hydrogenation of penta-1,3-diene and cyclooctadienes catalyzed by silver-modified palladium catalysts,” J. Mol. Catal. 24 (1984) 211-216.
[28] Q. Zhanga, J. Li, X. Liu and Q. Zhu, “Synergetic effect of Pd and Ag dispersed on Al2O3 in the selective hydrogenation of acetylene.” Appl. Catal. A: Gen. 197 (2000) 221-228.
[29] B. Ngamsom, N. Bogdanchikova, M. A. Borja and P. Praserthdam, “Characterisations of Pd-Ag/Al2O3 catalysts for selective acetylene hydrogenation: effect of pretreatment with NO and N2O,” Catal. Commun. 5 (2004) 243-248.
[30] S. Karski, I. Witońska, J. Rogowski and J. Gołuchowska, “Interaction between Pd and Ag on the surface of silica,” J. Mol. Catal. A: Chem. 240 (2005) 155-163.
[31] D. D. Miller and S. S. C. Chuang, “In situ infrared study of NO reduction over Pd/Al2O3 and Ag-Pd/Al2O3 catalysts under H2-rich and lean-burn conditions,” J. Taiwan Inst. Chem. Eng. 40 (2009) 613-621.
[32] S. S. C. Chuang, S. Pien and R. Narayanan, “C2 oxygenate synthesis from CO hydrogenation on AgRh/SiO2,” Appl. Catal. 57 (1990) 241-251.
[33] S. Sugawa, K. Sayama, K. Okabe and H. Arakawa, “Methanol synthesis from CO2 and H2 over silver catalyst,” Energy Convers. Manage. 36 (1995) 665-668.
[34] M. A. Ulibarri, I. Pavlovic, C. Barriga, M. C. Hermosin and J. Cornejo, “Adsorption of anionic species on hydrotalcite-like compounds: Effect of interlayer anion and crystallinity,” Appl. Clay Sci. 18 (2001) 17-27.
[35] F. Cavani, F. Trifiro and A. Vacari, “Hydrotalcite-type anionic clays: Preparation, properties and applications,” Catal. Today 11 (1911) 173-301.
[36] A. Corma, V. Fornes and F. Rey, “Hydrotalcite as base catalyst: Influence of the chemical composition and synthesis condition on the dehydrogenation of isopropanol,” J. Catal. 148 (1994) 205-212.
[37] N. Bejoy, “Hydrotalcite: The clay that cures,” Resonance, 6 (2001) 57-61.
[38] W. T. Reichle, “Catalytic reactions by thermally activated anionic clay minerals,” J. Catal. 94 (1985) 547-577.
[39] A. L. McKenzie , C. T. Fishel and T. J. Davis, “Investigation of the surface structure and basic properties of calcined hydrotalcite,” J. Catal. 138 (1992) 547-561.
[40] S. P. Liab and Z. P. Zhouc, “Synthesis and characterization of the mixed Mg/Al hydrotalcite-like compounds,” J. Dispersion Sci. Technol. 27 (2006) 1079-1084.
[41] D. Tichit, M. H. Lhouty, A. Guida, B. H. Chiche, F. Figueras, A. Auroux, D. Bartalini and E. Farronn, “Textural properties and catalytic activity of hydrotalcite,” J. Catal. 151 (1995) 50-59.
[42] W. Yang, Y. Kim, P. K. T. Liu, M. Sahimi and T. T. Tsotsis, “A study by in situ techniques of the thermal evolution of the structure of a Mg-Al-CO3 layered double hydroxide,” Chem. Eng. Sci. 57 (2002) 2945-2953.
[43] C. P. Keikar and A. A. Schutz, “Ni-, Mg- and Co-containing hydrotalcite-like materials with a sheet-like morphology: Synthesis and characterization,” Microporous Mater. 10 (1997) 163-172.
[44] M. Bolognini, F. Cavania, D. Scagliarini, C. Flego, C. Perego and M. Saba, “Heterogeneous basic catalysts as alternatives to homogeneous catalysts: Reactivity of Mg/Al mixed oxides in the alkylation of m-cresol with methanol,” Catal. Today 75 (2002) 103-111
[45] A. Corma, V. Fornes, R. M. Martin-Aranda and F. Rey, “Determination of base properties of hydrotalcite: Condensation of benzaldehyde with ethyl acetoacetate,” J. Catal. 134 (1992) 58-65.
[46] J. I. Di Cosimo, V. K. Díez, M. Xu, E. Iglesia and C. R. Apesteguı́a, “Structure and surface and catalytic properties of Mg-Al basic oxides,” J. Catal. 178, (1998) 499-510.
[47] N. D. Hutson and B. C. Attwood, “High temperature adsorption of CO2 on various hydrotalcite-like compounds,” Adsorption 14 (2008) 781-789.
[48] V. K. Díez, J. I. Di Cosimo and C. R. Apesteguía, “Study of the citral/acetone reaction on MgyAlOx oxides: Effect of the chemical composition on catalyst activity, selectivity and stability,” Appl. Catal. A 345 (2008) 143-151.
[49] W. J. Wang, H. X. Li and J. F. Deng, “Boron role on sulfur resistance of amorphous NiB/SiO2 catalyst poisoned by carbon disulfide in cyclopentadiene hydrogenation,” Appl. Catal. A: Gen. 203 (2000) 293-300.
[50] 江淑媜, “NiB非晶態觸媒奈米化的製備方法與選擇性氫化反應研究,” 國立中央大學, 化學工程與材料工程學系, 博士論文 (2008).
[51] N. N. Mal’tseva, Z. K. Sterlyadkina and V. I. Mikheeva, Chem. Abstr. 65 (1966) 1751f.
[52] J. Shen, Z. Li, Q. Yan and Y. Chen, “Reactions of bivalent metal ions with borohydride in aqueous solution for the preparation of ultrafine amorphous alloy particles”, J. Phys. Chem. 97 (1993) 8504.
[53] J. Shen, Z. Li and Y. Chen, “Preparation of Fe-B ultrafine amorphous alloy particles by the reaction of ferric-chloride and potassium borohydride in aqueous solution”, J. Mater. Sci. Lett. 13 131 (1994) 1208.
[54] 陳懿, 范以寧, 沈儉一, 胡徵, “非晶態合金超細微粒催化劑製備﹑表徵和催化作用的研究”, 超細微粒材料與觸媒研討會論文集, (1996) 1.
[55] P. G. N. Mertens, F. Cuypers, P.Vandezande, X.Ye, F.Verpoort, I. F. J. Vankelecom and D. E. De Vos, “Ag0 and Co0 nanocolloids as recyclable quasihomogeneous metal catalysts for the hydrogenation of α,β-unsaturated aldehydes to allylic alcohol fragrances,” Appl. Catal. A: Gen. 325 (2007) 130-139.
[56] C. Mohr and P. Claus, “Hydrogenation properties of supported nanosized gold particles,” Sci. Prog. 84 (2001) 311-334.
[57] R. A. V. Santan and M. Neurock, “Concepts in theoretical heterogeneous catalytic reactivity,” Catal. Rev.-Sci. Eng. 37 (1995) 557-698.
[58] D. V. Sokol’skii, N. V. Anisimova, A. K. Zharmagambetova, S.G. Mukhamedzhanova and L. N. Edygenova, “Pt−Fe2O3 catalytic system for hydrogenation reactions,” React. Kinet. Catal. Lett. 33 (1987) 399-403.
[59] G. Cordier, Y. Colleuille and P. Fouilloux, in Catalyse par les Metaux (B. Imelik et al., eds.), “Editions du CNRS, Paris,” (1984) 349.
[60] G. Cordier, French Patent F 2,329,628 (1975), to Rhone-Poulene S. A.; Chem. Abstr. 87, 38862s (1997).
[61] U. K. Singh and M. A. Vannice, “Liquid-phase citral hydrogenation over SiO2-supported group VIII metals,” J. Catal. 199 (2001) 73-84.
[62] A. Giroir-Fendler, D. Richard and P. Gallezot, “In heterogeneous catalysis and fine chemicals, studies in surface science and catalysis Vol.41, Elsevier, Amsterdam,” (1988) 171-178.
[63] A. Sepúlveda-Escribano, F. Coloma and F. Rodríguez-Reinoso, “Promoting effect of ceria on the gas phase hydrogenation of crotonaldehyde over platinum catalysts,” J. Catal. 178 (1998) 649-657.
[64] M. Consonni, D. Jokic, D. Y. Murzin and R. Touroude, “High performances of Pt/ZnO catalysts in selective hydrogenation of crotonaldehyde,” J. Catal. 188 (1999) 165-175.
[65] A. Grioir-Fendler, D. Richard and P. Gallezot, “Chemioselectivity in the catalytic hydrogenateon of cinnamaldehyde: effect of metal particle morphology,” Catal. Lett. 5 (1990) 175-181.
[66] M. Englisch, A. Jentys and J. A. Lercher, “Structure sensitivity of the hydrogenation of crotonaldehyde over Pt/SiO2 and TiO2,” J. Catal. 166 (1997) 25-35.
[67] M. Englisch, V. S. Ranade and J. A. Lercher, “Liquid phase hydrogenation of crotonaldehyde over Pt/SiO2,” Appl. Catal., A 163 (1997) 111-122.
[68] M. Abid, V. Paul-Boncour and R. Touroude, “Pt/CeO2 catalysts in crotonaldehyde hydrogenation: Selectivity, metal particle size and SMSI states,” Appl. Catal. A 297 (2006) 48-59.
[69] F. Delbecq and P. Sautet, “Competitive C=C and C=O adsorption of α,β-unsaturated aldehydes on Pt and Pd surfaces in relation with the selectivity of hydrogenation reactions: a theoretical approach,” J. Catal. 152 (1995) 217-236.
[70] V. Ponec, “On the role of promoters in hydrogenateon on metals: α,β-unsaturated aldehydes and ketones,” Appl. Catal. A: Gen. 149 (1997) 27-48.
[71] D. Goupil, P. Fouilloux and R. Maurel, “Activity and selectivity of Pt-Fe/C alloys for the liquid phase hydrogenation of cinnamaldehyde to cinnamyl alcohol,” React. Kinet. Catal. Lett. 35 (1987) 185-193.
[72] N. Mahata, F. Goncalves, M. Fernando, R. Pereira and J. L. Figueiredo, “Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst,” Appl. Catal. A: Gen. 339 (2008) 159-168.
[73] V. Satagopan and S.B. Chandalia, “Selectivity aspects in the multi-phase hydrogenation of α,β-unsaturated aldehydes over supported noble metal catalysts: Part II ,” J. Chem. Tech. Biotechnol. 60 (1994) 17-21.
[74] W. Koo-Amornpattana and J.M. Winterbottom, “Pt and Pt-alloy catalysts and their properties for the liquid-phase hydrogenation of cinnamaldehyde,” Catal. Today 66 (2001) 277-287.
[75] F. Zhao, Y. Ikushima, M. Chatterjee, O. Sato and M. Arai, “Hydrogenation of an α,β-unsaturated aldehyde catalyzed with ruthenium complexes with different fluorinated phosphine compounds in supercritical carbon dioxide and conventional organic solvents, ” J. Supercrit. Fluid 27 (2003) 65-72.
[76] M. Shirai, T. Tanaka and M. Arai, “Selective hydrogenation of α,β-unsaturated aldehyde to unsaturated alcohol with supported platinum catalysts at high pressures of hydrogen,” J. Mol. Catal. A: Chem. 168 (2001) 99-103.
[77] M. A. Aramendia, V. Borau, C. Jimenez, J.M. Marinas, A. Porras and F. J. Urbano, “Selective liquid-phase hydrogenation of citral over supported palladium,” J. Catal. 172 (1997) 46-54.
[78] I. Kun, G. Szöllösi and M. Bartók, “Crotonaldehyde hydrogenation over clay-supported platinum catalysts,” J. Mol. Catal. A: Chem. 169 (2001) 235-246.
[79] J. Hájek, N. Kumar, P. Mäki-Arvela, T. Salmi, and D.Y. Murzin, “Selective hydrogenation of cinnamaldehyde over Ru/Y zeolite,” J. Mol. Catal. A: Chem. 217 (2004) 145-154.
[80] J. Hájek, N. Kumar, P. Mäki-Arvela, T. Salmi D. Y. Murzin, I. Paseka, T. Heikkilä, E. Laine, P. Laukkanen and J. Väyrynen, “Ruthenium-modified MCM-41 mesoporous molecular sieve and Y zeolite catalysts for selective hydrogenation of cinnamaldehyde,” Appl. Catal. A: Gen. 251 (2003) 385-396.
[81] S. Mukherjee and M. A. Vannice, “Solvent effects in liquid-phase reactions I. Activity and selectivity during citral hydrogenation on Pt/SiO2 and evaluation of mass transfer effects,” J. Catal. 243 (2006) 108-130.
[82] J. Jia, K. Haraki, J. N. Kondo, K. Domen and K. Tamaru, “Selective hydrogenation of acetylene over Au/Al2O3 catalyst,” J. Phys. Chem. B 104 (2000) 11153-11156.
[83] M. Okumura, T. Akita and M. Haruta, “Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts,” Catal. Today 74 (2002) 265-269.
[84] J. E. Bailie and G. J. Hutchings, “Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation,” Chem. Commun. (1999) 2151-2152.
[85] S. Schimpf, M. Lucas, C. Mohr, U. Rodemerck, A. Brückner, J. Radnik, H. Hofmeister and P. Claus, “Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions,” Catal.Today 72 (2002) 63-78.
[86] C. Mohr, H. Hofmeister and P. Claus, “The influence of real structure of gold catalysts in the partial hydrogenation of acrolein,” J. Catal. 213 (2003) 86-94.
[87] J. Radnik, C. Mohr and P. Claus, “On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis,” Phys. Chem. Chem. Phys. 5 (2003) 172-177.
[88] C. Mohr, H. Hofmeister, J. Radnik and P. Claus, “Identification of active sites in gold-catalyzed hydrogenation of acrolein,” J. Am. Chem. Soc. 125 (2003) 1905-1911.
[89] J. E. Bailie, H. A. Abdullah, J. A. Anderson, C. H. Rochester, N.V. Richardson, N. Hodge, Jian-Guo Zhang, A. Burrows, C. J. Kiel, and G. J. Hutchings, “Hydrogenation of but-2-enal over supported Au/ZnO catalysts,” Phys. Chem. Chem. Phys. 3 (2001) 4113-4121.
[90] R. Zanella, C. Louis, S. Giorgio and R. Touroude, “Crotonaldehyde hydrogenation by gold supported on TiO2: Structure sensitivity and mechanism,” J. Catal. 223 (2004) 328-339.
[91] B. Campo, C. Petit and M. A. Volpe, “Hydrogenation of crotonaldehyde on different Au/CeO2 catalysts,” J. Catal. 254 (2008) 71-78.
[92] E. Bus, R. Prins and J. A. van Bokhoven, “Origin of the cluster-size effect in the hydrogenation of cinnamaldehyde over supported Au catalysts,” Catal. Commun. 8 (2007) 1397-1402.
[93] C. Milone, C. Crisafulli, R. Ingoglia, L. Schipilliti and S. Galvagno, “A comparative study on the selective hydrogenation of α,β unsaturated aldehyde and ketone to unsaturated alcohols on Au supported catalysts,” Catal. Today 122 (2007) 341-351.
[94] B. Campo, M. Volpe, S. Ivanova and R. Touroude, “Selective hydrogenation of crotonaldehyde on Au/HSA-CeO2 catalysts,” J. Catal. 242 (2006) 162-171.
[95] J. L. Solomon and R. J. Madix, “π bonded intermediates in alcohol oxidation: Orientations of allyloxy and propargyloxy on Ag(110) by near edge X-ray absorption fine structure,” J. Chem. Phys. 89 (1998) 5316-5322.
[96] J. L. Solomon and R. J. Madix, “Kinetics and mechanism of the oxidation of allyl alcohol on Ag(110),” J. Phys. Chem. 91 (1987) 6241-6244.
[97] P. Claus and H. Hofmeister, “Electron microscopy and catalytic study of silver catalysts: Structure sensitivity of the hydrogenation of crotonaldehyde,” J. Phys. Chem. B 103(1999) 2766-2775.
[98] B. C. Khanra, Y. Jugnet and J. C. Bertolini “Energetics of acrolein hydrogenation on Pt(111) and Ag(111) surfaces: a BOC-MP model study,” J. Mol. Catal. A: Chem. 208 (2004) 167-174.
[99] M. Bron, D. Teschner, A. Knop-Gericke, F. C. Jentoft, J. Kröhnert, J. Hohmeyer, C. Volckmar, B. Steinhauer, R. Schlögl and P. Claus, “Silver as acrolein hydrogenation catalyst: Intricate effects of catalyst nature and reactant partial pressures,” Phys. Chem. Chem. Phys. 9 (2007) 3559-3569.
[100] K. Brandt, M. E. Chiu, D. J. Watson, M. S. Tikhov and R. M. Lambert, “Chemoselective catalytic hydrogenation of acrolein on Ag(111): Effect of molecular orientation on reaction selectivity,” J. Am. Chem. Soc. 131 (2009) 17286-17290.
[101] R. Ferullo, M. M. Branda and F. Illas, “Coverage dependence of the structure of acrolein adsorbed on Ag(111),” J. Phys. Chem. Lett. 1 (2010) 2546-2549.
[102] K. H. Lim, Z. X. Chen, K. M. Neyman and N. Rösch, “Adsorption of acrolein on single-crystal surfaces of silver: Density functional studies,” Chem. Phys. Lett. 420 (2006) 60-64.
[103] M. Lucas and P. Claus, “Hydrogenations over silver: A highly active and chemoselective Ag-In/SiO2 catalyst for the one-step synthesis of allyl alcohol from acrolein,” Chem. Eng. Technol. 28 (2005) 867-870.
[104] F. Haass, M. Bron, H. Fuess and P. Claus, “In situ X-ray investigations on AgIn/SiO2 hydrogenation catalysts,” Appl. Catal. A: Gen. 318 (2007) 9-16.
[105] W. Gru1nert, A. Bru1ckner, H. Hofmeister and P. Claus, “Structural properties of Ag/TiO2 catalysts for acrolein hydrogenation,” J. Phys. Chem. B 18 (2004) 5709-5717.
[106] C. E. Volckmar, M. Bron, U. Bentrup, A. Martinb and P. Claus, “Influence of the support composition on the hydrogenation of acrolein over Ag/SiO2-Al2O3 catalysts,” J. Catal. 261 (2009) 1-8.
[107] M. Steffan, M. Lucas, A. Brandner, M. Wollny, N. Oldenburg and P. Claus, “Selective hydrogenation of citral in an organic solvent, in a ionic liquid, and in substance,” Chem. Eng. Technol. 30 (2007) 481-486.
[108] A. F. Holleman and E. Wiberg, “Inorganic Chemistry,” Academic Press: San Diego (2001).
|