博碩士論文 993204002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.135.190.107
姓名 莊依蕙(Yi-Huei Juang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 化學還原法製備Ag/Mg2AlO觸媒之研究-α,β-不飽和醛選擇性氫化反應
(Preparation of Ag/Mg2AlO catalyst by chemical reduction method-selective hydrogenation of α, β-unsaturated aldehyde)
相關論文
★ Ag/Mg2AlO-hydrotalcite觸媒於α,β-不飽和醛選擇性氫化反應之研究★ 貴金屬對CuO/ZnO/Al2O3觸媒於甲醇部分氧化/蒸汽重組複合式反應的影響
★ Au觸媒於硝基苯氫化反應及硝基苯乙烯選擇性氫化反應之研究★ 苯於CuO/Ce0.9-xZr0.1MnxO2觸媒 之全氧化反應研究
★ 苯於Ag/Ce0.9-xZr0.1MnxO2觸媒之全氧化反應研究★ 甲醇蒸汽重組產氫觸媒之設計
★ CH4+CO2於ZrO2/SiO2與La2O3/Al2O3負載式鉑觸媒之重組反應研究★ 以化學還原/共沉澱法製備Cu/ZrO2/metal oxide觸煤應用於CO2+H2合成甲醇反應之研究
★ CuB超細合金觸媒之製備與催化性質探討★ 負載式CoB非晶態合金觸媒製備與催化性質探討
★ CuB系列觸媒於甲酸甲酯氫解及一段式甲醇合成法之研究★ Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究
★ 負載式CuB合金觸媒製備與催化性質探討★ CH4/CO2於CeO2氧化物與CexZr1-xO2共氧化物負載式Pt觸媒之重組反應研究
★ 奈米NiB、CoB非晶態合金觸媒於檸檬醛選擇氫化反應之研究★ 高分子穩定化奈米NiB觸媒之製備與催化性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本實驗室曾以傳統臨濕含浸法經含浸、煅燒、還原製備Ag/Mg2AlO觸媒,應用於檸檬醛選擇性氫化反應,發現活性不及金觸媒,但選擇率不亞於金觸媒。本研究以硝酸銀為前驅鹽,並依過去經驗採經100°C煅燒的Mg2AlO-hydrotalcite為擔體,採臨濕含浸法擬將硝酸銀含浸並乾燥固著於Mg2AlO擔體上,以NaBH4化學還原製備觸媒,避免發生燒結。研究過程中發現以100~150°C乾燥固著時,觸媒顏色明顯由白色轉變為黑色,且具有媲美金觸媒的活性與選擇率。本研究將觸媒製備分為兩大類加以探討,一為乾燥固著,未經NaBH4還原的Ag*/Mg2AlO觸媒,另一為乾燥固著後再以NaBH4進行還原的Ag/Mg2AlO觸媒。
10wt%Ag*/Mg2AlO觸媒,其擔體Mg2AlO-hydrotalcite的鹼性扮演重要的角色,Mg2AlO擔體的強鹼性基能促進硝酸銀部分分解,即使以低溫的50°C及25°C為乾燥固著溫度,10wt%Ag*/Mg2AlO觸媒就具有相當的活性,隨乾燥固著溫度上升,觸媒顏色由白變黑,硝酸銀部分分解成Ag0,於150°C有最佳活性與選擇率。乾燥固著溫度大於150°C,則銀顆粒聚集,使活性明顯下降。
10wt%Ag/Mg2AlO觸媒為乾燥固著之10wt%Ag*/Mg2AlO再經NaBH4還原程序所得,NaBH4還原程序可將尚未分解的硝酸銀還原成Ag0,但10wt%Ag/Mg2AlO觸媒活性遠不及10wt%Ag*/Mg2AlO未還原觸媒。150°C乾燥固著溫度不足以將硝酸銀有效固著於擔體上,經NaBH4還原程序的銀顆粒容易聚集,且Na離子的殘留會削弱銀觸媒活性。乾燥固著溫度不足也使一部分硝酸銀來不及在擔體上被還原,就溶出至還原液中,在還原液中被還原成奈米銀,使得還原液具有高於觸媒的活性。
化學還原法不適用於Mg2AlO擔體,Mg2AlO擔體的強鹼性基在乾燥固著時會促進硝酸銀分解。SiO2及γ-Al2O3則可藉提高乾燥固著溫度強化硝酸銀固著力,以NaBH4還原製得Ag/SiO2及Ag/γ-Al2O3觸媒,但反應活性仍低於Ag/Mg2AlO還原觸媒,更遠不及Ag*/Mg2AlO未還原觸媒。本研究發現硝酸銀採簡單的含浸與乾燥固著,不經NaBH4還原程序,即可得到具有高活性及選擇率的氫化觸媒Ag*/Mg2AlO,用於α,β-不飽和醛選擇性氫化反應。
反應物分子於銀觸媒表面之吸附作用力為類似物理作用力,不同於一般金屬觸媒之共價作用力,使得10wt%Ag*/Mg2AlO觸媒於α,β-不飽和醛反應不同於一般金屬觸媒催化行為,優先氫化共軛C=C/C=O鍵的C=O鍵,且不會繼續氫化單一C=C鍵;不飽和醛分子愈大,催化活性愈好;C=C鍵旁較大立體障礙的肉桂醛,不飽和醇選擇率反不及檸檬醛。
摘要(英) Our research in the past, silver was dispersed on a solid base of Mg2AlO-hydrotalicite using the traditional wet impregnation method via impregnating, calcinating and reducing to preparation Ag/Mg2AlO catalyst for selective hydrogenation of citral. The investigation confirms the activity of Ag/Mg2AlO inferior to gold catalyst, but selectivity as good as gold catalyst. To avoid sintering, in the present study, silver nitrate as precursor salts, and the Mg2AlO-hydrotalcite calcined at 100°C as a support by past experience, using the wet impregnation method to be containing silver nitrate impregnating, drying and fixating on Mg2AlO to preparation of Ag/Mg2AlO catalyst by chemical reduction method with NaBH4. This study found the catalyst drying and fixating at 100~150°C, the color evident changes from white to black, and have a comparable gold catalyst activity and selectivity. The study will take catalyst preparation are divided into two categories, one is Ag*/Mg2AlO catalyst by drying and fixating without NaBH4 reducing, and another is Ag/Mg2AlO catalyst by drying and fixating with NaBH4 reducing.
The basic of Mg2AlO-hydrotalcite as a support plays an important role on 10wt%Ag*/Mg2AlO catalyst, the strong basic sites of Mg2AlO can promote silver nitrate to decompose even at low temperatures 50°C or 25°C as drying and fixating temperature, the 10wt%Ag*/Mg2AlO catalyst still has considerable activity. The color changes from white to black, silver nitrate partially decomposed into Ag0 when the drying and fixating temperature raise, a selection of the best activity and selectivity at 150°C. Drying and fixating temperature greater than 150°C, silver is sintering then activity decreased significantly.
Preparation 10wt%Ag/Mg2AlO catalyst by 10wt%Ag*/Mg2AlO drying and fixating with NaBH4 reducing, the NaBH4 reducing procedures will making silver nitrate decomposed into Ag0, but 10wt%Ag/Mg2AlO catalyst activity is far less 10wt%Ag*/Mg2AlO catalyst without NaBH4 reducing. Drying and fixating temperature at 150°C not enough to be effective fixed silver nitrate on the support, using NaBH4 reducing procedures, silver easily sintering and Na ion residues weakens the activity of silver catalyst. In addition, drying and fixating temperature not enough, a portion of the silver nitrate too late to reduce on the support, it will dissolving to reducing liquid and reducing to the Nano silver in the reducing liquid, the reducing liquid caused higher activity than the catalyst.
Chemical reduction method does not apply to Mg2AlO support, the strong basic sites of Mg2AlO can promote silver nitrate to decompose when drying and fixating. SiO2 and γ-Al2o3 can strengthening silver nitrate fixed on the support by increase drying and fixating temperature, and using NaBH4 reducing procedures to preparation Ag/SiO2 and Ag/γ-Al2O3 catalysts, but the activity remains below Ag/Mg2AlO catalyst, more far less Ag*/Mg2AlO catalyst. This study found that simple method containing silver nitrate impregnating, drying and fixating without NaBH4 reducing procedures, can get a hydrogenation catalyst Ag*/Mg2AlO with high activity and selectivity for selective hydrogenation of α,β- unsaturated aldehyde.
The interaction force of reactant molecule adsorbed on the surface of the silver metal catalyst was similar of the dipole-dipole interaction and dispersion force which was such as physical interaction not as the covalent interaction of gerenal hydrogenation metal catalyst, making the 10wt%Ag*/Mg2AlO catalyst in α,β- unsaturated aldehyde reaction different from general catalytic behavior of metal catalyst. The C=O bond of conjugated C=C/C=O bond was hydrogenated priority, the remained C=C bond from conjugated C=C/C=O bond would not be hydrogenated continuously. The longer fuctional groups of unsaturated aldehyde molecule, the greater catalytic activity. Besides, cinnamaldehyde have the larger steric hindrance of the phenyl group around the conjugated C=C bond, but the selectivity of cinnamyl alcohol from cinnamaldehyde reduction is smaller than that of nerol/geraniol from citral.
關鍵字(中) ★ α
★ β-不飽和醛
★ 氫化反應
★ 硼氫化鈉
★ 鎂鋁氧
★ 銀觸媒
關鍵字(英) ★ hydrogenation
★ β-unsaturated aldehyde
★ α
★ Ag
★ Mg2AlO
★ NaBH4
論文目次 摘 要 i
誌 謝 v
目 錄 vii
圖 目 錄 x
表 目 錄 xiii
第一章 緒論 1
第二章 文獻回顧 4
2-1 銀觸媒的發展史 4
2-2 MgxAlO-hydrotalcite擔體 6
2-2-1 MgxAlO-hydrotalcite結構性質 6
2-2-2 MgxAlO-hydrotalcite之製備 7
2-2-3 MgxAlO-hydrotalcite熱處理性質 8
2-2-4 MgxAlO-hydrotalcite觸媒酸鹼性質 11
2-3 化學還原法 14
2-4 α,β-不飽和醛選擇性氫化反應 15
2-4-1 第VIII族過渡金屬 16
2-4-2 鉑金屬觸媒 17
2-4-2-(a) 擔體效應 18
2-4-2-(b) 金屬顆粒大小之影響 20
2-4-2-(c) 促進劑之影響 22
2-4-2-(d) 溶劑效應 23
2-4-3 金觸媒 24
2-4-3-(a) 金顆粒的大小與型態 24
2-4-3-(b) 擔體性質 28
2-4-4 銀觸媒 29
2-4-4-(a) 金屬顆粒大小與表面型態之影響 30
2-4-4-(b) 擔體性質 32
2-4-4-(c) 溶劑效應 35
第三章 實驗方法與設備 37
3-1 Mg2AlO-hydrotalcite擔體之製備 37
3-2 Ag/Mg2AlO-hydrotalcite觸媒之製備 37
3-3 擔體與觸媒性質鑑定 40
3-3-1 X-射線繞射分析(XRD) 40
3-3-2 穿透式電子顯微鏡(TEM) 40
3-3-3 Χ-射線光電子光譜(XPS) 41
3-4 反應活性測試 42
3-5 實驗藥品及氣體 45
第四章 結果與討論 47
4-1 Ag*/Mg2AlO-hydrotalcite於檸檬醛選擇性氫化反應 47
4-1-1 觸媒乾燥固著溫度之影響 47
4-1-2 觸媒於不同擔體的影響 57
4-1-3 銀負載量之影響 65
4-2 Ag/Mg2AlO-hydrotalcite於檸檬醛選擇性氫化反應 70
4-2-1 NaBH4還原劑量之影響 70
4-2-2 Na離子殘留之影響 75
4-2-3 乾燥固著與擔體之影響 78
4-3 Ag*/Mg2AlO觸媒於α,β-不飽和醛選擇性氫化 87
4-3-1 檸檬醛於Ag*/Mg2AlO之選擇性氫化行為 87
4-3-2 反應物分子大小 91
第五章 結論 96
總 結 97
參考文獻 98
參考文獻 [1] V. Ponec, “On the role of promoters in hydrogenateon on metals: α,β-unsaturated aldehydes and ketones,” Appl. Catal. A: Gen. 149 (1997) 27-48.
[2] N. Mahata, F. Goncalves, M. Fernando, R. Pereira and J. L. Figueiredo, “Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst,” Appl. Catal. A: Gen. 339 (2008) 159-168.
[3] D. Goupil, P. Fouilloux and R. Maurel, “Activity and selectivity of Pt-Fe/C alloys for the liquid phase hydrogenation of cinnamaldehyde to cinnamyl alcohol,” React. Kinet. Catal. Lett. 35 (1987) 185-193.
[4] M. A. Vannice and B. Sen, “Metal-support effects on the intramolecular selectivity of crotonaldehyde hydrogenation over platinum,” J. Catal. 115 (1989) 65-78.
[5] H. Yoshitake and Y. Iwasawa, “Active sites and reaction mechanisms for deuteration of acrolein on TiO2-, Y2O3-, ZrO2-, CeO2 and Na/SiO2- supported platinum catalysts,” J. Chem. Soc. Faraday Trans. 88 (3) (1992) 503-510.
[6] A. Sepúlveda-Escribano, F. Coloma and F. Rodríguez-Reinoso, “Promoting effect of ceria on the gas phase hydrogenation of crotonaldehyde over platinum catalysts,” J. Catal. 178 (1998) 649-657.
[7] 李東穎, “Pd/hydrotalcite觸媒於苯酚一步合成環己酮之研究,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (1997).
[8] 蔡俊煌, “Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2002).
[9] 廖志偉, “一步合成甲基異丁基酮之多功能觸媒研究-Pd(Ni)/ hydrotalcite,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (1996).
[10] C. T. Chang, B. J. Liaw, C.T. Huang and Y. Z. Chen, “Preparation of Au/MgxAlO hydrotalcite catalysts for CO oxidation,” Appl. Catal., A: Gen. 332 (2007) 216-224.
[11] 游焜竣, “Au/MgxAlO-hydrotalcite觸媒於α,β-不飽和醛選擇性氫化反應之研究,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2008).
[12] 吳佩珊, “Au觸媒於α,β-不飽和醛選擇性氫化反應之擔體效應研究,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2010).
[13] P. Claus, “Selective hydrogenation of α,β-unsaturated aldehydes and other C=O and C=C bonds containing compounds,” Top. Catal. 5 (1998) 51-62.
[14] 王駿, “Ag/Mg2AlO-hydrotalcite觸媒於α,β-不飽和醛選擇性氫化反應之研究,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2011).
[15] M. E. Eberhart, M. M. Donovan and R. A. Outlaw, “Ab initio calculations of oxygen diffusivity in Group IB transition metals,” Phys. Rev. B: Condens. Matter Mater. Phys. 46 (1992) 12744-12747.
[16] L. Gang, B. G. Anderson, J. V. Grandelle and R. A. Santen, “Low temperature selective oxidation of ammonia to nitrogen on silver-based catalysts,” Appl. Catal. B: Environ. 40 (2003) 101-110.
[17] O. Blank, German Patent 228 (1910) 697.
[18] T. E. Lefort, United States Patent (1935) US1998878.
[19] S. R. Seyedmonir, J. K. Plischke, M. A. Vannice and H.W. Young, “Ethylene oxidation over small silver crystallines,” J. Catal. 123 (1990) 534-549.
[20] V. I. Bukhtiyarov, I. P. Prosvirin and R. I. Kvon, “Study of reactivity of oxygen states adsorbed at a silver surface towards C2H4 by XPS, TPD and TPR,” Surf. Sci. 320 (1994) 47-50.
[21] B. Hammer and J. K. Norskov, “Electronic factors determining the reactivity of metal surfaces,” Surf. Sci. 343 (1995) 211-220.
[22] A. B. Mohammad, I. V. Yudanov, K. H. Lim, K. M. Neyman and N. Rsch, “Hydrogen activation on silver: A computational study on surface and subsurface sxygen species,” J. Phys. Chem. C 112 (2008) 1628-1635.
[23] A. Montoya, A. Schlunke and B. S. Haynes, “Reaction of hydrogen with Ag(111): binding states, minimum energy paths and kinetics,” J. Phys. Chem. B 110 (2006) 17145-17154.
[24] R. J. Mikovsky, M. Boudart and H. S. Taylor, “Hydrogen-deuterium exchange on copper, silver, gold and alloy surface,” J. Am. Chem. Soc. 76 (1954) 3814-3819.
[25] V. Ponec and G. C. Bond, “Catalysis by Metals and Alloys,” Elsevier: Amsterdam (1996)
[26] A. Metcalfe and M. W. Rowden, “Hydrogenation of nitrobenzene over palladium-silver catalysts,” J. Catal. 22 (1971) 30-34.
[27] C. Fragalea, M. Garganoa, N. Ravasioa, M. Rossi1 and I. Santoa, “Selective hydrogenation of penta-1,3-diene and cyclooctadienes catalyzed by silver-modified palladium catalysts,” J. Mol. Catal. 24 (1984) 211-216.
[28] Q. Zhanga, J. Li, X. Liu and Q. Zhu, “Synergetic effect of Pd and Ag dispersed on Al2O3 in the selective hydrogenation of acetylene.” Appl. Catal. A: Gen. 197 (2000) 221-228.
[29] B. Ngamsom, N. Bogdanchikova, M. A. Borja and P. Praserthdam, “Characterisations of Pd-Ag/Al2O3 catalysts for selective acetylene hydrogenation: effect of pretreatment with NO and N2O,” Catal. Commun. 5 (2004) 243-248.
[30] S. Karski, I. Witońska, J. Rogowski and J. Gołuchowska, “Interaction between Pd and Ag on the surface of silica,” J. Mol. Catal. A: Chem. 240 (2005) 155-163.
[31] D. D. Miller and S. S. C. Chuang, “In situ infrared study of NO reduction over Pd/Al2O3 and Ag-Pd/Al2O3 catalysts under H2-rich and lean-burn conditions,” J. Taiwan Inst. Chem. Eng. 40 (2009) 613-621.
[32] S. S. C. Chuang, S. Pien and R. Narayanan, “C2 oxygenate synthesis from CO hydrogenation on AgRh/SiO2,” Appl. Catal. 57 (1990) 241-251.
[33] S. Sugawa, K. Sayama, K. Okabe and H. Arakawa, “Methanol synthesis from CO2 and H2 over silver catalyst,” Energy Convers. Manage. 36 (1995) 665-668.
[34] M. A. Ulibarri, I. Pavlovic, C. Barriga, M. C. Hermosin and J. Cornejo, “Adsorption of anionic species on hydrotalcite-like compounds: Effect of interlayer anion and crystallinity,” Appl. Clay Sci. 18 (2001) 17-27.
[35] F. Cavani, F. Trifiro and A. Vacari, “Hydrotalcite-type anionic clays: Preparation, properties and applications,” Catal. Today 11 (1911) 173-301.
[36] A. Corma, V. Fornes and F. Rey, “Hydrotalcite as base catalyst: Influence of the chemical composition and synthesis condition on the dehydrogenation of isopropanol,” J. Catal. 148 (1994) 205-212.
[37] N. Bejoy, “Hydrotalcite: The clay that cures,” Resonance, 6 (2001) 57-61.
[38] W. T. Reichle, “Catalytic reactions by thermally activated anionic clay minerals,” J. Catal. 94 (1985) 547-577.
[39] A. L. McKenzie , C. T. Fishel and T. J. Davis, “Investigation of the surface structure and basic properties of calcined hydrotalcite,” J. Catal. 138 (1992) 547-561.
[40] S. P. Liab and Z. P. Zhouc, “Synthesis and characterization of the mixed Mg/Al hydrotalcite-like compounds,” J. Dispersion Sci. Technol. 27 (2006) 1079-1084.
[41] D. Tichit, M. H. Lhouty, A. Guida, B. H. Chiche, F. Figueras, A. Auroux, D. Bartalini and E. Farronn, “Textural properties and catalytic activity of hydrotalcite,” J. Catal. 151 (1995) 50-59.
[42] W. Yang, Y. Kim, P. K. T. Liu, M. Sahimi and T. T. Tsotsis, “A study by in situ techniques of the thermal evolution of the structure of a Mg-Al-CO3 layered double hydroxide,” Chem. Eng. Sci. 57 (2002) 2945-2953.
[43] C. P. Keikar and A. A. Schutz, “Ni-, Mg- and Co-containing hydrotalcite-like materials with a sheet-like morphology: Synthesis and characterization,” Microporous Mater. 10 (1997) 163-172.
[44] M. Bolognini, F. Cavania, D. Scagliarini, C. Flego, C. Perego and M. Saba, “Heterogeneous basic catalysts as alternatives to homogeneous catalysts: Reactivity of Mg/Al mixed oxides in the alkylation of m-cresol with methanol,” Catal. Today 75 (2002) 103-111
[45] A. Corma, V. Fornes, R. M. Martin-Aranda and F. Rey, “Determination of base properties of hydrotalcite: Condensation of benzaldehyde with ethyl acetoacetate,” J. Catal. 134 (1992) 58-65.
[46] J. I. Di Cosimo, V. K. Díez, M. Xu, E. Iglesia and C. R. Apesteguı́a, “Structure and surface and catalytic properties of Mg-Al basic oxides,” J. Catal. 178, (1998) 499-510.
[47] N. D. Hutson and B. C. Attwood, “High temperature adsorption of CO2 on various hydrotalcite-like compounds,” Adsorption 14 (2008) 781-789.
[48] V. K. Díez, J. I. Di Cosimo and C. R. Apesteguía, “Study of the citral/acetone reaction on MgyAlOx oxides: Effect of the chemical composition on catalyst activity, selectivity and stability,” Appl. Catal. A 345 (2008) 143-151.
[49] W. J. Wang, H. X. Li and J. F. Deng, “Boron role on sulfur resistance of amorphous NiB/SiO2 catalyst poisoned by carbon disulfide in cyclopentadiene hydrogenation,” Appl. Catal. A: Gen. 203 (2000) 293-300.
[50] 江淑媜, “NiB非晶態觸媒奈米化的製備方法與選擇性氫化反應研究,” 國立中央大學, 化學工程與材料工程學系, 博士論文 (2008).
[51] N. N. Mal’tseva, Z. K. Sterlyadkina and V. I. Mikheeva, Chem. Abstr. 65 (1966) 1751f.
[52] J. Shen, Z. Li, Q. Yan and Y. Chen, “Reactions of bivalent metal ions with borohydride in aqueous solution for the preparation of ultrafine amorphous alloy particles”, J. Phys. Chem. 97 (1993) 8504.
[53] J. Shen, Z. Li and Y. Chen, “Preparation of Fe-B ultrafine amorphous alloy particles by the reaction of ferric-chloride and potassium borohydride in aqueous solution”, J. Mater. Sci. Lett. 13 131 (1994) 1208.
[54] 陳懿, 范以寧, 沈儉一, 胡徵, “非晶態合金超細微粒催化劑製備﹑表徵和催化作用的研究”, 超細微粒材料與觸媒研討會論文集, (1996) 1.
[55] P. G. N. Mertens, F. Cuypers, P.Vandezande, X.Ye, F.Verpoort, I. F. J. Vankelecom and D. E. De Vos, “Ag0 and Co0 nanocolloids as recyclable quasihomogeneous metal catalysts for the hydrogenation of α,β-unsaturated aldehydes to allylic alcohol fragrances,” Appl. Catal. A: Gen. 325 (2007) 130-139.
[56] C. Mohr and P. Claus, “Hydrogenation properties of supported nanosized gold particles,” Sci. Prog. 84 (2001) 311-334.
[57] R. A. V. Santan and M. Neurock, “Concepts in theoretical heterogeneous catalytic reactivity,” Catal. Rev.-Sci. Eng. 37 (1995) 557-698.
[58] D. V. Sokol’skii, N. V. Anisimova, A. K. Zharmagambetova, S.G. Mukhamedzhanova and L. N. Edygenova, “Pt−Fe2O3 catalytic system for hydrogenation reactions,” React. Kinet. Catal. Lett. 33 (1987) 399-403.
[59] G. Cordier, Y. Colleuille and P. Fouilloux, in Catalyse par les Metaux (B. Imelik et al., eds.), “Editions du CNRS, Paris,” (1984) 349.
[60] G. Cordier, French Patent F 2,329,628 (1975), to Rhone-Poulene S. A.; Chem. Abstr. 87, 38862s (1997).
[61] U. K. Singh and M. A. Vannice, “Liquid-phase citral hydrogenation over SiO2-supported group VIII metals,” J. Catal. 199 (2001) 73-84.
[62] A. Giroir-Fendler, D. Richard and P. Gallezot, “In heterogeneous catalysis and fine chemicals, studies in surface science and catalysis Vol.41, Elsevier, Amsterdam,” (1988) 171-178.
[63] A. Sepúlveda-Escribano, F. Coloma and F. Rodríguez-Reinoso, “Promoting effect of ceria on the gas phase hydrogenation of crotonaldehyde over platinum catalysts,” J. Catal. 178 (1998) 649-657.
[64] M. Consonni, D. Jokic, D. Y. Murzin and R. Touroude, “High performances of Pt/ZnO catalysts in selective hydrogenation of crotonaldehyde,” J. Catal. 188 (1999) 165-175.
[65] A. Grioir-Fendler, D. Richard and P. Gallezot, “Chemioselectivity in the catalytic hydrogenateon of cinnamaldehyde: effect of metal particle morphology,” Catal. Lett. 5 (1990) 175-181.
[66] M. Englisch, A. Jentys and J. A. Lercher, “Structure sensitivity of the hydrogenation of crotonaldehyde over Pt/SiO2 and TiO2,” J. Catal. 166 (1997) 25-35.
[67] M. Englisch, V. S. Ranade and J. A. Lercher, “Liquid phase hydrogenation of crotonaldehyde over Pt/SiO2,” Appl. Catal., A 163 (1997) 111-122.
[68] M. Abid, V. Paul-Boncour and R. Touroude, “Pt/CeO2 catalysts in crotonaldehyde hydrogenation: Selectivity, metal particle size and SMSI states,” Appl. Catal. A 297 (2006) 48-59.
[69] F. Delbecq and P. Sautet, “Competitive C=C and C=O adsorption of α,β-unsaturated aldehydes on Pt and Pd surfaces in relation with the selectivity of hydrogenation reactions: a theoretical approach,” J. Catal. 152 (1995) 217-236.
[70] V. Ponec, “On the role of promoters in hydrogenateon on metals: α,β-unsaturated aldehydes and ketones,” Appl. Catal. A: Gen. 149 (1997) 27-48.
[71] D. Goupil, P. Fouilloux and R. Maurel, “Activity and selectivity of Pt-Fe/C alloys for the liquid phase hydrogenation of cinnamaldehyde to cinnamyl alcohol,” React. Kinet. Catal. Lett. 35 (1987) 185-193.
[72] N. Mahata, F. Goncalves, M. Fernando, R. Pereira and J. L. Figueiredo, “Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst,” Appl. Catal. A: Gen. 339 (2008) 159-168.
[73] V. Satagopan and S.B. Chandalia, “Selectivity aspects in the multi-phase hydrogenation of α,β-unsaturated aldehydes over supported noble metal catalysts: Part II ,” J. Chem. Tech. Biotechnol. 60 (1994) 17-21.
[74] W. Koo-Amornpattana and J.M. Winterbottom, “Pt and Pt-alloy catalysts and their properties for the liquid-phase hydrogenation of cinnamaldehyde,” Catal. Today 66 (2001) 277-287.
[75] F. Zhao, Y. Ikushima, M. Chatterjee, O. Sato and M. Arai, “Hydrogenation of an α,β-unsaturated aldehyde catalyzed with ruthenium complexes with different fluorinated phosphine compounds in supercritical carbon dioxide and conventional organic solvents, ” J. Supercrit. Fluid 27 (2003) 65-72.
[76] M. Shirai, T. Tanaka and M. Arai, “Selective hydrogenation of α,β-unsaturated aldehyde to unsaturated alcohol with supported platinum catalysts at high pressures of hydrogen,” J. Mol. Catal. A: Chem. 168 (2001) 99-103.
[77] M. A. Aramendia, V. Borau, C. Jimenez, J.M. Marinas, A. Porras and F. J. Urbano, “Selective liquid-phase hydrogenation of citral over supported palladium,” J. Catal. 172 (1997) 46-54.
[78] I. Kun, G. Szöllösi and M. Bartók, “Crotonaldehyde hydrogenation over clay-supported platinum catalysts,” J. Mol. Catal. A: Chem. 169 (2001) 235-246.
[79] J. Hájek, N. Kumar, P. Mäki-Arvela, T. Salmi, and D.Y. Murzin, “Selective hydrogenation of cinnamaldehyde over Ru/Y zeolite,” J. Mol. Catal. A: Chem. 217 (2004) 145-154.
[80] J. Hájek, N. Kumar, P. Mäki-Arvela, T. Salmi D. Y. Murzin, I. Paseka, T. Heikkilä, E. Laine, P. Laukkanen and J. Väyrynen, “Ruthenium-modified MCM-41 mesoporous molecular sieve and Y zeolite catalysts for selective hydrogenation of cinnamaldehyde,” Appl. Catal. A: Gen. 251 (2003) 385-396.
[81] S. Mukherjee and M. A. Vannice, “Solvent effects in liquid-phase reactions I. Activity and selectivity during citral hydrogenation on Pt/SiO2 and evaluation of mass transfer effects,” J. Catal. 243 (2006) 108-130.
[82] J. Jia, K. Haraki, J. N. Kondo, K. Domen and K. Tamaru, “Selective hydrogenation of acetylene over Au/Al2O3 catalyst,” J. Phys. Chem. B 104 (2000) 11153-11156.
[83] M. Okumura, T. Akita and M. Haruta, “Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts,” Catal. Today 74 (2002) 265-269.
[84] J. E. Bailie and G. J. Hutchings, “Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation,” Chem. Commun. (1999) 2151-2152.
[85] S. Schimpf, M. Lucas, C. Mohr, U. Rodemerck, A. Brückner, J. Radnik, H. Hofmeister and P. Claus, “Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions,” Catal.Today 72 (2002) 63-78.
[86] C. Mohr, H. Hofmeister and P. Claus, “The influence of real structure of gold catalysts in the partial hydrogenation of acrolein,” J. Catal. 213 (2003) 86-94.
[87] J. Radnik, C. Mohr and P. Claus, “On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis,” Phys. Chem. Chem. Phys. 5 (2003) 172-177.
[88] C. Mohr, H. Hofmeister, J. Radnik and P. Claus, “Identification of active sites in gold-catalyzed hydrogenation of acrolein,” J. Am. Chem. Soc. 125 (2003) 1905-1911.
[89] J. E. Bailie, H. A. Abdullah, J. A. Anderson, C. H. Rochester, N.V. Richardson, N. Hodge, Jian-Guo Zhang, A. Burrows, C. J. Kiel, and G. J. Hutchings, “Hydrogenation of but-2-enal over supported Au/ZnO catalysts,” Phys. Chem. Chem. Phys. 3 (2001) 4113-4121.
[90] R. Zanella, C. Louis, S. Giorgio and R. Touroude, “Crotonaldehyde hydrogenation by gold supported on TiO2: Structure sensitivity and mechanism,” J. Catal. 223 (2004) 328-339.
[91] B. Campo, C. Petit and M. A. Volpe, “Hydrogenation of crotonaldehyde on different Au/CeO2 catalysts,” J. Catal. 254 (2008) 71-78.
[92] E. Bus, R. Prins and J. A. van Bokhoven, “Origin of the cluster-size effect in the hydrogenation of cinnamaldehyde over supported Au catalysts,” Catal. Commun. 8 (2007) 1397-1402.
[93] C. Milone, C. Crisafulli, R. Ingoglia, L. Schipilliti and S. Galvagno, “A comparative study on the selective hydrogenation of α,β unsaturated aldehyde and ketone to unsaturated alcohols on Au supported catalysts,” Catal. Today 122 (2007) 341-351.
[94] B. Campo, M. Volpe, S. Ivanova and R. Touroude, “Selective hydrogenation of crotonaldehyde on Au/HSA-CeO2 catalysts,” J. Catal. 242 (2006) 162-171.
[95] J. L. Solomon and R. J. Madix, “π bonded intermediates in alcohol oxidation: Orientations of allyloxy and propargyloxy on Ag(110) by near edge X-ray absorption fine structure,” J. Chem. Phys. 89 (1998) 5316-5322.
[96] J. L. Solomon and R. J. Madix, “Kinetics and mechanism of the oxidation of allyl alcohol on Ag(110),” J. Phys. Chem. 91 (1987) 6241-6244.
[97] P. Claus and H. Hofmeister, “Electron microscopy and catalytic study of silver catalysts: Structure sensitivity of the hydrogenation of crotonaldehyde,” J. Phys. Chem. B 103(1999) 2766-2775.
[98] B. C. Khanra, Y. Jugnet and J. C. Bertolini “Energetics of acrolein hydrogenation on Pt(111) and Ag(111) surfaces: a BOC-MP model study,” J. Mol. Catal. A: Chem. 208 (2004) 167-174.
[99] M. Bron, D. Teschner, A. Knop-Gericke, F. C. Jentoft, J. Kröhnert, J. Hohmeyer, C. Volckmar, B. Steinhauer, R. Schlögl and P. Claus, “Silver as acrolein hydrogenation catalyst: Intricate effects of catalyst nature and reactant partial pressures,” Phys. Chem. Chem. Phys. 9 (2007) 3559-3569.
[100] K. Brandt, M. E. Chiu, D. J. Watson, M. S. Tikhov and R. M. Lambert, “Chemoselective catalytic hydrogenation of acrolein on Ag(111): Effect of molecular orientation on reaction selectivity,” J. Am. Chem. Soc. 131 (2009) 17286-17290.
[101] R. Ferullo, M. M. Branda and F. Illas, “Coverage dependence of the structure of acrolein adsorbed on Ag(111),” J. Phys. Chem. Lett. 1 (2010) 2546-2549.
[102] K. H. Lim, Z. X. Chen, K. M. Neyman and N. Rösch, “Adsorption of acrolein on single-crystal surfaces of silver: Density functional studies,” Chem. Phys. Lett. 420 (2006) 60-64.
[103] M. Lucas and P. Claus, “Hydrogenations over silver: A highly active and chemoselective Ag-In/SiO2 catalyst for the one-step synthesis of allyl alcohol from acrolein,” Chem. Eng. Technol. 28 (2005) 867-870.
[104] F. Haass, M. Bron, H. Fuess and P. Claus, “In situ X-ray investigations on AgIn/SiO2 hydrogenation catalysts,” Appl. Catal. A: Gen. 318 (2007) 9-16.
[105] W. Gru1nert, A. Bru1ckner, H. Hofmeister and P. Claus, “Structural properties of Ag/TiO2 catalysts for acrolein hydrogenation,” J. Phys. Chem. B 18 (2004) 5709-5717.
[106] C. E. Volckmar, M. Bron, U. Bentrup, A. Martinb and P. Claus, “Influence of the support composition on the hydrogenation of acrolein over Ag/SiO2-Al2O3 catalysts,” J. Catal. 261 (2009) 1-8.
[107] M. Steffan, M. Lucas, A. Brandner, M. Wollny, N. Oldenburg and P. Claus, “Selective hydrogenation of citral in an organic solvent, in a ionic liquid, and in substance,” Chem. Eng. Technol. 30 (2007) 481-486.
[108] A. F. Holleman and E. Wiberg, “Inorganic Chemistry,” Academic Press: San Diego (2001).
指導教授 廖炳傑、陳吟足
(Biing-Jye Liaw、Yin-Zu Chen)
審核日期 2012-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明