博碩士論文 993204020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.217.246.148
姓名 黃聰閔(Tsung-Min Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用具有奈米片段的生醫材料進行純化及去除癌症幹細胞
(PURIFICATION AND DEPLETION OF CANCER INITIATING CELLS CULTURED ON BIOMATERIALS HAVING NANOSEGMENTS)
相關論文
★ 人類幹細胞培養於熱敏感奈米片段材料之研究★ 抗癌藥物的鑑定性用於分析大腸癌中癌幹細胞之研究
★ 羊水間葉幹細胞培養於細胞外間質及材料硬度/彈性表面,其分化能力及多能性之研究★ 人類脂肪幹細胞的膜純化法與分化能力研究
★ 人類羊水間葉幹細胞培養於具有奈米片段與最佳表面硬度的生醫材料,其增殖與成骨分化能力★ 多能幹細胞在無異種條件下分化為間充質幹細 胞的生物材料比較研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 腫瘤是由一般癌細胞和小比例的癌症幹細胞所組成,其中這小部分的癌症幹細胞具有自我更新且是腫瘤形成的主要原因。如果我們可以發展出個材料並且可以去除掉癌症幹細胞,這樣對未來臨床上的治療會有一定程度的幫助.舉例來說,如果我們可以發展出材料,並且可以去除掉癌症幹細胞,這樣我們可以避免使用具有副作用的抗癌藥物.除此之外,此種材料還具有純化兼業幹細胞的功能。這樣一來,在臨床上的應用會更寬廣。
癌症幹細胞的表面標記物目前還是未知的,雖然CD34+, CD44+, CD133+, CD166+,Sca-1, Lgr5,和 Muc2,等等標記物在某些文獻中認為可能是癌症幹細胞的表面標記物,但還是有些文件證明出癌症幹細胞的表面標記物是不存在的。總而言之,最直接的方法就是使用動物實驗去探討致瘤性與表面標記物的關係。
在這個實驗,我們使用了兩種癌細胞株 (LoVo, Colo205),和Primary cell.培養在TCPS盤,ECM塗佈盤,和Pluronic-grafting盤。其中Pluronic是由PEO-PPO-PEO所組成的共聚物,此種材料在某些文獻已經發表過此種材料可以促進造血幹細胞的培養。在我們的研究中,我們發現培養在這種材料的捱細胞,其致瘤性會比較差,而培養在ECM塗佈盤和decellularized盤上的癌細胞其致瘤性將會有顯著的提升。此實驗告訴我們,此種材料可以抑制腫瘤的生成,我們猜測它可以去除掉CSC(即cancer-initiating cell),而ECM塗佈盤,和decellularized盤則可以促進CSC的生長。
摘要(英) Tumors contain a small subpopulation of cells, i.e., cancer stem cells (CSCs, cancer-initiating cells), which exhibit a self renewing capacity and are responsible for tumor generation. The cancer stem cells and not normal cancer cells persist in tumors as a distinct population, and cause relapse and metastasis by giving rise to new tumors. It is necessary to eliminate only a tiny subset of cells (0.0001-0.1%, cancer stem cells) that have the ability to generate a new tumour in cancer patients. If we succeed to develop biomaterials where CSCs are depleted or purified from tumor cells, it should be useful in clinical application. The purified CSCs can be used for the development of the specific anti-cancer drugs targeting only the cancer stem cells. We can save tumor patients with low side effects of medicine and avoid relapse and metastasis. On the other hand, the depletion of CSCs from tissue should be useful for the isolation of mesenchymal stem cells or bone marrow cells (hematopoietic stem cells) from patient tissue or blood. The mesenchymal stem cells or bone marrow depleting CSCs can be used for the stem cell therapy for the patients.
Currently, surface markers and/or gene expression of CSCs are unknown, although CD34+, CD44+, CD133+, CD166+,Sca-1, Lgr5,and Muc2, etc are suggested. There are several contrary data suggesting those surface markers and/or genes are not specific to CSCs. The most promising method to quantify and identify CSCs is in vivo experiments where the sample cells are injected into mice subcutaneously, and to evaluate the tumor generation speed by the injection of the sample cells.
In this study, several colon cancer cell lines (LoVo, Colo205, etc) and primary colon cancer cells from patients are cultured on tissue culture dishes (TCPS), extracellular matrix (ECM, collagen type I, fibronectin, vitronectin, orlaminin) coated dishes, and pluronic-grafted dishes. The pluronic is polyethylene oxide (PEO)-polypropylene oxide (PPO)-PEO triblock copolymers where it is reported that hematopoietic stem cells efficiently preserved on pluronic-grafted dishes. It is found that tumor generation of colon cancer cells was enhanced after the colon cancer cells were cultured on ECM-coated dishes and decellularized-dishes, which indicates CSCs are enriched. On the other hand, tumor generation of colon cancer cells decreased after culture of colon cancer cells on pluronic-grafted dishes. Remarkably, tumor generation did not observed when primary colon cancer cells were cultured on pluronic-grafted dishes, which indicates CSCs in primary colon cancer cells are depleted after culture on pluronic-grafted dishes. It is concluded that the pluronic-grafted surface deplete cancer-initiating cells (CSCs) from colon cancer cell lines and primary cancer cells, while CSCs in colon cancer cells are enhanced by culture on conventional TCPS, decellularized and ECM-grafted dishes promote CSCs.
關鍵字(中) ★ 去除
★ 癌症幹細胞
★ 材料
關鍵字(英) ★ deplete
★ cancer stem cell
★ material
論文目次 Chapter 1 Introduction IX
1-1The relationship between stem cells and cancer stem cells 1
1-1-1 Stem cell 1
1-1-2 Cancers and Cancer stem cells 2
1-1-3 Identity of cancer stem cells 5
1-1-4 Relationship between cancer cells and microenviroment 8
1-1-4-1 ECM 9
1-1-4-2 Purification of stem on biomaterials having nano-segment 13
1-1-4-3 Decellularized ECM from ADSCs and AFSCs 14
1-2 Analysis of CSCs by flow cytometry 16
1-3 Isolation of CSCs by magnetic-activated cell sorting (MACs) 17
1-4 Immunofluorescent staining (IF) 19
1-5 Quantitative real-time Polymerase chain reaction (QRT-PCR) 20
1-6 in vivo tumorigenic assay 22
1-7 Immunohistological staining (IHC) 22
Chapter 2 Materials and Methods 24
2-1 Cell lines and patient specimens 24
2-1-1 Cancer cell lines 24
2-1-2 Patient specimen 24
2-2 Cell culture condition 25
2-2-1 LoVo cells 25
2-2-2 Colo205 cells 25
2-2-3 Primary-colon cancer cells and adipose stem cells (ADSCs) 26
2-2-4 Amniotic fluid stem cells (AFSCs) 26
2-3 Preparation of buffer solution 27
2-4 Preparation of ECM-coated dish 27
2-5 Preparation of CDI activated pluronic Poly-L-lysine plate 28
2-6 Preparation of decellularized-dish 29
2-7 X-ray photoelectron spectra (XPS) 29
2-8 Water contact angle 29
2-9 Flow cytometry 30
2-10 MACs sorting method 31
2-11 Isolation of RNA and QRT-PCR 32
2-11-1 Isolation of RNA 32
Chapter 1 Introduction IX
1-1The relationship between stem cells and cancer stem cells 1
1-1-1 Stem cell 1
1-1-2 Cancers and Cancer stem cells 2
1-1-3 Identity of cancer stem cells 5
1-1-4 Relationship between cancer cells and microenviroment 8
1-1-4-1 ECM 9
1-1-4-2 Purification of stem on biomaterials having nano-segment 13
1-1-4-3 Decellularized ECM from ADSCs and AFSCs 14
1-2 Analysis of CSCs by flow cytometry 16
1-3 Isolation of CSCs by magnetic-activated cell sorting (MACs) 17
1-4 Immunofluorescent staining (IF) 19
1-5 Quantitative real-time Polymerase chain reaction (QRT-PCR) 20
1-6 in vivo tumorigenic assay 22
1-7 Immunohistological staining (IHC) 22
Chapter 2 Materials and Methods 24
2-1 Cell lines and patient specimens 24
2-1-1 Cancer cell lines 24
2-1-2 Patient specimen 24
2-2 Cell culture condition 25
2-2-1 LoVo cells 25
2-2-2 Colo205 cells 25
2-2-3 Primary-colon cancer cells and adipose stem cells (ADSCs) 26
2-2-4 Amniotic fluid stem cells (AFSCs) 26
2-3 Preparation of buffer solution 27
2-4 Preparation of ECM-coated dish 27
2-5 Preparation of CDI activated pluronic Poly-L-lysine plate 28
2-6 Preparation of decellularized-dish 29
2-7 X-ray photoelectron spectra (XPS) 29
2-8 Water contact angle 29
2-9 Flow cytometry 30
2-10 MACs sorting method 31
2-11 Isolation of RNA and QRT-PCR 32
2-11-1 Isolation of RNA 32
2-11-2 Single-strand cDNA synthesis 32
2-11-3 Q-PCR (Polymerase Chain Reaction) steps 34
2-12 In vivo tumor generation 35
2-13 Immunofluorescence 37
2-14 Immunohistochemistry 38
Chapter 3 Result and Discussion 40
3-1 Physical characteristics of ECM coating plates and CDI activated Pluronic poly-L-lysine plates 40
3-2 The effect of the microenviroment on the cell morphology 50
3-2-1 The cell morphology on ECM-coating dishes 50
3-2-2 The cell morphology on pluronic-grafting dishes 50
3-2-3 The cell morphology on decellularized-dishes 51
3-3 Characterization of purified cancer stem cells (CSC) 57
3-3-1 Putative cancer stem cell markers analyzed by Q-PCR (Quantitative-Polymerase Chain Reaction) 57
3-3-2 Putative cancer stem cell markers analyzed by flow cytometry and immunofluorescence 60
3-3-3 In vivo tumorigenic bioassay 71
3-3-3-1 The tumorigenic potential of putative cancer stem cells sorted by MACS 71
3-3-3-2 The tumorigenic potential of colon cancer cells cultivated on surface modified plates 71
3-3-4 The relationship between the expression of surface markers and tumor volume 85
3-3-4-1 The relationship between gene expression and tumor volume for Colo205 cells 85
3-3-4-2 The relationship between LGR5 and CD133 expression in protein level and tumor volume for Colo205 cells 87
3-3-4-3 The relationship between expression of LGR5 and CD133 in gene level and tumor generation for primary-colon-cancer cells 89
Chapter 4 Conclusions 91
Supplementary data 95
Reference 113
參考文獻 [1] H. Lin and T. Schagat, "Neuroblasts: a model for the asymmetric division of stem cells," Trends Genet, vol. 13, pp. 33-9, Jan 1997.
[2] C. M. Verfaillie, M. F. Pera, and P. M. Lansdorp, "Stem cells: hype and reality," Hematology Am Soc Hematol Educ Program, pp. 369-91, 2002.
[3] W. Guo, J. L. Lasky, and H. Wu, "Cancer stem cells," Pediatric Research, vol. 59, pp. 59r-64r, Apr 2006.
[4] M. J. Dewey, D. W. Martin, Jr., G. R. Martin, and B. Mintz, "Mosaic mice with teratocarcinoma-derived mutant cells deficient in hypoxanthine phosphoribosyltransferase," Proc Natl Acad Sci U S A, vol. 74, pp. 5564-8, Dec 1977.
[5] M. J. Evans and M. H. Kaufman, "Establishment in culture of pluripotential cells from mouse embryos," Nature, vol. 292, pp. 154-6, Jul 9 1981.
[6] G. R. Martin, "Teratocarcinomas as a model system for the study of embryogenesis and neoplasia," Cell, vol. 5, pp. 229-43, Jul 1975.
[7] G. J. Spangrude, S. Heimfeld, and I. L. Weissman, "Purification and characterization of mouse hematopoietic stem cells," Science, vol. 241, pp. 58-62, Jul 1 1988.
[8] S. J. Morrison and I. L. Weissman, "The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype," Immunity, vol. 1, pp. 661-73, Nov 1994.
[9] C. M. Baum, I. L. Weissman, A. S. Tsukamoto, A. M. Buckle, and B. Peault, "Isolation of a candidate human hematopoietic stem-cell population," Proc Natl Acad Sci U S A, vol. 89, pp. 2804-8, Apr 1 1992.
[10] M. Osawa, K. Hanada, H. Hamada, and H. Nakauchi, "Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell," Science, vol. 273, pp. 242-5, Jul 12 1996.
[11] T. Reya, S. J. Morrison, M. F. Clarke, and I. L. Weissman, "Stem cells, cancer, and cancer stem cells," Nature, vol. 414, pp. 105-11, Nov 1 2001.
[12] C. Smith, "Hematopoietic stem cells and hematopoiesis," Cancer Control, vol. 10, pp. 9-16, Jan-Feb 2003.
[13] M. F. Clarke and M. Fuller, "Stem cells and cancer: two faces of eve," Cell, vol. 124, pp. 1111-5, Mar 24 2006.
[14] P. Dalerba, R. W. Cho, and M. F. Clarke, "Cancer stem cells: models and concepts," Annu Rev Med, vol. 58, pp. 267-84, 2007.
[15] B. M. Boman and M. S. Wicha, "Cancer stem cells: a step toward the cure," J Clin Oncol, vol. 26, pp. 2795-9, Jun 10 2008.
[16] D. Bonnet and J. E. Dick, "Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell," Nat Med, vol. 3, pp. 730-7, Jul 1997.
[17] A. Spira and D. S. Ettinger, "Multidisciplinary management of lung cancer," N Engl J Med, vol. 350, pp. 379-92, Jan 22 2004.
[18] H. S. Hsu, C. K. Wen, Y. A. Tang, R. K. Lin, W. Y. Li, W. H. Hsu, and Y. C. Wang, "Promoter hypermethylation is the predominant mechanism in hMLH1 and hMSH2 deregulation and is a poor prognostic factor in nonsmoking lung cancer," Clin Cancer Res, vol. 11, pp. 5410-6, Aug 1 2005.
[19] Y. C. Chen, H. S. Hsu, Y. W. Chen, T. H. Tsai, C. K. How, C. Y. Wang, S. C. Hung, Y. L. Chang, M. L. Tsai, Y. Y. Lee, H. H. Ku, and S. H. Chiou, "Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells," PLoS One, vol. 3, p. e2637, 2008.
[20] M. A. Socinski and J. A. Bogart, "Limited-stage small-cell lung cancer: the current status of combined-modality therapy," J Clin Oncol, vol. 25, pp. 4137-45, Sep 10 2007.
[21] E. D. Bernstein, S. M. Herbert, and N. H. Hanna, "Chemotherapy and radiotherapy in the treatment of resectable non-small-cell lung cancer," Ann Surg Oncol, vol. 13, pp. 291-301, Mar 2006.
[22] W. K. Lam and D. N. Watkins, "Lung cancer: future directions," Respirology, vol. 12, pp. 471-7, Jul 2007.
[23] L. Ricci-Vitiani, D. G. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro, C. Peschle, and R. De Maria, "Identification and expansion of human colon-cancer-initiating cells," Nature, vol. 445, pp. 111-5, Jan 4 2007.
[24] A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, C. Smigal, and M. J. Thun, "Cancer statistics, 2006," CA Cancer J Clin, vol. 56, pp. 106-30, Mar-Apr 2006.
[25] M. Al-Hajj, M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, and M. F. Clarke, "Prospective identification of tumorigenic breast cancer cells," Proc Natl Acad Sci U S A, vol. 100, pp. 3983-8, Apr 1 2003.
[26] R. Pardal, M. F. Clarke, and S. J. Morrison, "Applying the principles of stem-cell biology to cancer," Nat Rev Cancer, vol. 3, pp. 895-902, Dec 2003.
[27] M. A. Goodell, K. Brose, G. Paradis, A. S. Conner, and R. C. Mulligan, "Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo," J Exp Med, vol. 183, pp. 1797-806, Apr 1 1996.
[28] B. J. Chiasson, V. Tropepe, C. M. Morshead, and D. van der Kooy, "Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics," J Neurosci, vol. 19, pp. 4462-71, Jun 1 1999.
[29] R. M. Seaberg and D. van der Kooy, "Stem and progenitor cells: the premature desertion of rigorous definitions," Trends Neurosci, vol. 26, pp. 125-31, Mar 2003.
[30] L. Vermeulen, M. Todaro, F. de Sousa Mello, M. R. Sprick, K. Kemper, M. Perez Alea, D. J. Richel, G. Stassi, and J. P. Medema, "Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity," Proc Natl Acad Sci U S A, vol. 105, pp. 13427-32, Sep 9 2008.
[31] M. Todaro, M. G. Francipane, J. P. Medema, and G. Stassi, "Colon cancer stem cells: promise of targeted therapy," GASTROENTEROLOGY, vol. 138, pp. 2151-62, Jun 2010.
[32] T. Klonisch, E. Wiechec, S. Hombach-Klonisch, S. R. Ande, S. Wesselborg, K. Schulze-Osthoff, and M. Los, "Cancer stem cell markers in common cancers - therapeutic implications," Trends Mol Med, vol. 14, pp. 450-60, Oct 2008.
[33] L. Ricci-Vitiani, E. Fabrizi, E. Palio, and R. De Maria, "Colon cancer stem cells," J Mol Med (Berl), vol. 87, pp. 1097-104, Nov 2009.
[34] J. Papailiou, K. J. Bramis, M. Gazouli, and G. Theodoropoulos, "Stem cells in colon cancer. A new era in cancer theory begins," International Journal of Colorectal Disease, vol. 26, pp. 1-11, Jan 2011.
[35] A. H. Yin, S. Miraglia, E. D. Zanjani, G. Almeida-Porada, M. Ogawa, A. G. Leary, J. Olweus, J. Kearney, and D. W. Buck, "AC133, a novel marker for human hematopoietic stem and progenitor cells," Blood, vol. 90, pp. 5002-12, Dec 15 1997.
[36] C. A. O’’Brien, A. Pollett, S. Gallinger, and J. E. Dick, "A human colon cancer cell capable of initiating tumour growth in immunodeficient mice," Nature, vol. 445, pp. 106-10, Jan 4 2007.
[37] S. K. Singh, C. Hawkins, I. D. Clarke, J. A. Squire, J. Bayani, T. Hide, R. M. Henkelman, M. D. Cusimano, and P. B. Dirks, "Identification of human brain tumour initiating cells," Nature, vol. 432, pp. 396-401, Nov 18 2004.
[38] W. Hilbe, S. Dirnhofer, F. Oberwasserlechner, T. Schmid, E. Gunsilius, G. Hilbe, E. Woll, and C. M. Kahler, "CD133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer," J Clin Pathol, vol. 57, pp. 965-9, Sep 2004.
[39] A. Eramo, F. Lotti, G. Sette, E. Pilozzi, M. Biffoni, A. Di Virgilio, C. Conticello, L. Ruco, C. Peschle, and R. De Maria, "Identification and expansion of the tumorigenic lung cancer stem cell population," Cell Death Differ, vol. 15, pp. 504-14, Mar 2008.
[40] A. Haegebarth and H. Clevers, "Wnt signaling, lgr5, and stem cells in the intestine and skin," Am J Pathol, vol. 174, pp. 715-21, Mar 2009.
[41] N. Barker, J. H. van Es, J. Kuipers, P. Kujala, M. van den Born, M. Cozijnsen, A. Haegebarth, J. Korving, H. Begthel, P. J. Peters, and H. Clevers, "Identification of stem cells in small intestine and colon by marker gene Lgr5," Nature, vol. 449, pp. 1003-7, Oct 25 2007.
[42] F. Walker, H. H. Zhang, A. Odorizzi, and A. W. Burgess, "LGR5 is a negative regulator of tumourigenicity, antagonizes Wnt signalling and regulates cell adhesion in colorectal cancer cell lines," PLoS One, vol. 6, p. e22733, 2011.
[43] G. Bhardwaj, B. Murdoch, D. Wu, D. P. Baker, K. P. Williams, K. Chadwick, L. E. Ling, F. N. Karanu, and M. Bhatia, "Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation," Nat Immunol, vol. 2, pp. 172-80, Feb 2001.
[44] R. T. Costello, F. Mallet, B. Gaugler, D. Sainty, C. Arnoulet, J. A. Gastaut, and D. Olive, "Human acute myeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities," Cancer Research, vol. 60, pp. 4403-11, Aug 15 2000.
[45] A. Ouhtit, Z. Y. Abd Elmageed, M. E. Abdraboh, T. F. Lioe, and M. H. Raj, "In vivo evidence for the role of CD44s in promoting breast cancer metastasis to the liver," Am J Pathol, vol. 171, pp. 2033-9, Dec 2007.
[46] S. K. Singh, I. D. Clarke, M. Terasaki, V. E. Bonn, C. Hawkins, J. Squire, and P. B. Dirks, "Identification of a cancer stem cell in human brain tumors," Cancer Research, vol. 63, pp. 5821-8, Sep 15 2003.
[47] G. D. Richardson, C. N. Robson, S. H. Lang, D. E. Neal, N. J. Maitland, and A. T. Collins, "CD133, a novel marker for human prostatic epithelial stem cells," J Cell Sci, vol. 117, pp. 3539-45, Jul 15 2004.
[48] A. T. Collins, P. A. Berry, C. Hyde, M. J. Stower, and N. J. Maitland, "Prospective identification of tumorigenic prostate cancer stem cells," Cancer Research, vol. 65, pp. 10946-51, Dec 1 2005.
[49] L. Xin, D. A. Lawson, and O. N. Witte, "The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis," Proc Natl Acad Sci U S A, vol. 102, pp. 6942-7, May 10 2005.
[50] D. A. Lawson, L. Xin, R. Lukacs, Q. Xu, D. Cheng, and O. N. Witte, "Prostate stem cells and prostate cancer," Cold Spring Harb Symp Quant Biol, vol. 70, pp. 187-96, 2005.
[51] P. Dalerba, S. J. Dylla, I. K. Park, R. Liu, X. Wang, R. W. Cho, T. Hoey, A. Gurney, E. H. Huang, D. M. Simeone, A. A. Shelton, G. Parmiani, C. Castelli, and M. F. Clarke, "Phenotypic characterization of human colorectal cancer stem cells," Proc Natl Acad Sci U S A, vol. 104, pp. 10158-63, Jun 12 2007.
[52] L. Du, H. Wang, L. He, J. Zhang, B. Ni, X. Wang, H. Jin, N. Cahuzac, M. Mehrpour, Y. Lu, and Q. Chen, "CD44 is of functional importance for colorectal cancer stem cells," Clin Cancer Res, vol. 14, pp. 6751-60, Nov 1 2008.
[53] S. Bao, Q. Wu, S. Sathornsumetee, Y. Hao, Z. Li, A. B. Hjelmeland, Q. Shi, R. E. McLendon, D. D. Bigner, and J. N. Rich, "Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor," Cancer Research, vol. 66, pp. 7843-8, Aug 15 2006.
[54] S. Bruno, B. Bussolati, C. Grange, F. Collino, M. E. Graziano, U. Ferrando, and G. Camussi, "CD133+ renal progenitor cells contribute to tumor angiogenesis," Am J Pathol, vol. 169, pp. 2223-35, Dec 2006.
[55] L. Zhu, P. Gibson, D. S. Currle, Y. Tong, R. J. Richardson, I. T. Bayazitov, H. Poppleton, S. Zakharenko, D. W. Ellison, and R. J. Gilbertson, "Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation," Nature, vol. 457, pp. 603-7, Jan 29 2009.
[56] R. Yoshikawa, Y. Nakano, L. Tao, K. Koishi, T. Matsumoto, M. Sasako, T. Tsujimura, T. Hashimoto-Tamaoki, and Y. Fujiwara, "Hedgehog signal activation in oesophageal cancer patients undergoing neoadjuvant chemoradiotherapy," Br J Cancer, vol. 98, pp. 1670-4, May 20 2008.
[57] H. Takahashi, H. Ishii, N. Nishida, I. Takemasa, T. Mizushima, M. Ikeda, T. Yokobori, K. Mimori, H. Yamamoto, M. Sekimoto, Y. Doki, and M. Mori, "Significance of Lgr5(+ve) cancer stem cells in the colon and rectum," Ann Surg Oncol, vol. 18, pp. 1166-74, Apr 2011.
[58] C. Li, D. G. Heidt, P. Dalerba, C. F. Burant, L. Zhang, V. Adsay, M. Wicha, M. F. Clarke, and D. M. Simeone, "Identification of pancreatic cancer stem cells," Cancer Research, vol. 67, pp. 1030-7, Feb 1 2007.
[59] C. J. Lee, J. Dosch, and D. M. Simeone, "Pancreatic cancer stem cells," J Clin Oncol, vol. 26, pp. 2806-12, Jun 10 2008.
[60] E. M. Hurt, B. T. Kawasaki, G. J. Klarmann, S. B. Thomas, and W. L. Farrar, "CD44+ CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis," Br J Cancer, vol. 98, pp. 756-65, Feb 26 2008.
[61] M. F. Clarke, "A self-renewal assay for cancer stem cells," Cancer Chemother Pharmacol, vol. 56 Suppl 1, pp. 64-8, Nov 2005.
[62] M. Todaro, "Colon Cancer Stem Cells: Promise of Targeted Therapy," GASTROENTEROLOGY, vol. 138, 2010.
[63] L. Ricci-Vitiani, E. Fabrizi, E. Palio, and R. De Maria, "Colon cancer stem cells," Journal of Molecular Medicine-Jmm, vol. 87, pp. 1097-1104, Nov 2009.
[64] J. A. Joyce and J. W. Pollard, "Microenvironmental regulation of metastasis," Nat Rev Cancer, vol. 9, pp. 239-52, Apr 2009.
[65] E. M. Hurt, K. Chan, M. A. Serrat, S. B. Thomas, T. D. Veenstra, and W. L. Farrar, "Identification of vitronectin as an extrinsic inducer of cancer stem cell differentiation and tumor formation," Stem Cells, vol. 28, pp. 390-8, Mar 31 2010.
[66] T. Armstrong, G. Packham, L. B. Murphy, A. C. Bateman, J. A. Conti, D. R. Fine, C. D. Johnson, R. C. Benyon, and J. P. Iredale, "Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma," Clin Cancer Res, vol. 10, pp. 7427-37, Nov 1 2004.
[67] S. J. Wall, Y. Jiang, R. J. Muschel, and Y. A. DeClerck, "Meeting report: Proteases, extracellular matrix, and cancer: an AACR Special Conference in Cancer Research," Cancer Research, vol. 63, pp. 4750-5, Aug 1 2003.
[68] S. Dasgupta, S. Srinidhi, and J. K. Vishwanatha, "Oncogenic activation in prostate cancer progression and metastasis: Molecular insights and future challenges," J Carcinog, vol. 11, p. 4, 2012.
[69] A. Dityatev and M. Schachner, "Extracellular matrix molecules and synaptic plasticity," Nat Rev Neurosci, vol. 4, pp. 456-68, Jun 2003.
[70] F. G. Giancotti and E. Ruoslahti, "Integrin signaling," Science, vol. 285, pp. 1028-32, Aug 13 1999.
[71] J. D. Hood and D. A. Cheresh, "Role of integrins in cell invasion and migration," Nat Rev Cancer, vol. 2, pp. 91-100, Feb 2002.
[72] J. W. Lee and R. Juliano, "Mitogenic signal transduction by integrin- and growth factor receptor-mediated pathways," Mol Cells, vol. 17, pp. 188-202, Apr 30 2004.
[73] T. Sethi, R. C. Rintoul, S. M. Moore, A. C. MacKinnon, D. Salter, C. Choo, E. R. Chilvers, I. Dransfield, S. C. Donnelly, R. Strieter, and C. Haslett, "Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo," Nat Med, vol. 5, pp. 662-8, Jun 1999.
[74] J. S. Damiano, A. E. Cress, L. A. Hazlehurst, A. A. Shtil, and W. S. Dalton, "Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines," Blood, vol. 93, pp. 1658-67, Mar 1 1999.
[75] J. H. Uhm, N. P. Dooley, A. P. Kyritsis, J. S. Rao, and C. L. Gladson, "Vitronectin, a glioma-derived extracellular matrix protein, protects tumor cells from apoptotic death," Clin Cancer Res, vol. 5, pp. 1587-94, Jun 1999.
[76] R. Jinka, R. Kapoor, P. G. Sistla, T. A. Raj, and G. Pande, "Alterations in Cell-Extracellular Matrix Interactions during Progression of Cancers," Int J Cell Biol, vol. 2012, p. 219196, 2012.
[77] F. Aoudjit and K. Vuori, "Integrin signaling in cancer cell survival and chemoresistance," Chemother Res Pract, vol. 2012, p. 283181, 2012.
[78] S. Kim, W. C. Myung, J. S. Lee, J. K. Cha, U. W. Jung, H. C. Yang, I. S. Lee, and S. H. Choi, "The effect of fibronectin-coated implant on canine osseointegration," J Periodontal Implant Sci, vol. 41, pp. 242-7, Oct 2011.
[79] R. E. Weiss and A. H. Reddi, "Synthesis and localization of fibronectin during collagenous matrix-mesenchymal cell interaction and differentiation of cartilage and bone in vivo," Proc Natl Acad Sci U S A, vol. 77, pp. 2074-8, Apr 1980.
[80] P. A. Norton and R. O. Hynes, "In vitro splicing of fibronectin pre-mRNAs," Nucleic Acids Res, vol. 18, pp. 4089-97, Jul 25 1990.
[81] S. Han, F. R. Khuri, and J. Roman, "Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways," Cancer Research, vol. 66, pp. 315-23, Jan 1 2006.
[82] http://en.wikipedia.org/wiki.
[83] K. T. Preissner and D. Seiffert, "Role of vitronectin and its receptors in haemostasis and vascular remodeling," Thromb Res, vol. 89, pp. 1-21, Jan 1 1998.
[84] B. Felding-Habermann and D. A. Cheresh, "Vitronectin and its receptors," Curr Opin Cell Biol, vol. 5, pp. 864-8, Oct 1993.
[85] G. A. Di Lullo, S. M. Sweeney, J. Korkko, L. Ala-Kokko, and J. D. San Antonio, "Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen," J Biol Chem, vol. 277, pp. 4223-31, Feb 8 2002.
[86] J. Mollenhauer, I. Roether, and H. F. Kern, "Distribution of extracellular matrix proteins in pancreatic ductal adenocarcinoma and its influence on tumor cell proliferation in vitro," Pancreas, vol. 2, pp. 14-24, 1987.
[87] "http://themedicalbiochemistrypage.org/extracellularmatrix.html."
[88] A. Higuchi, N. Aoki, T. Yamamoto, Y. Gomei, S. Egashira, Y. Matsuoka, T. Miyazaki, H. Fukushima, S. Jyujyoji, and S. H. Natori, "Bioinert surface of pluronic-immobilized flask for preservation of hematopoietic stem cells," Biomacromolecules, vol. 7, pp. 1083-9, Apr 2006.
[89] A. Higuchi, N. Aoki, T. Yamamoto, T. Miyazaki, H. Fukushima, T. M. Tak, S. Jyujyoji, S. Egashira, Y. Matsuoka, and S. H. Natori, "Temperature-induced cell detachment on immobilized pluronic surface," J Biomed Mater Res A, vol. 79, pp. 380-92, Nov 2006.
[90] H. Ungefroren, S. Sebens, D. Seidl, H. Lehnert, and R. Hass, "Interaction of tumor cells with the microenvironment," Cell Commun Signal, vol. 9, p. 18, 2011.
[91] S. F. Badylak, "Xenogeneic extracellular matrix as a scaffold for tissue reconstruction," Transpl Immunol, vol. 12, pp. 367-77, Apr 2004.
[92] F. Chen, J. J. Yoo, and A. Atala, "Acellular collagen matrix as a possible "off the shelf" biomaterial for urethral repair," Urology, vol. 54, pp. 407-10, Sep 1999.
[93] G. Dellgren, M. Eriksson, L. A. Brodin, and K. Radegran, "The extended Biocor stentless aortic bioprosthesis. Early clinical experience," Scand Cardiovasc J, vol. 33, pp. 259-64, 1999.
[94] C. Harper, "Permacol: clinical experience with a new biomaterial," Hosp Med, vol. 62, pp. 90-5, Feb 2001.
[95] A. R. Kolker, D. J. Brown, J. S. Redstone, V. M. Scarpinato, and M. K. Wallack, "Multilayer reconstruction of abdominal wall defects with acellular dermal allograft (AlloDerm) and component separation," Ann Plast Surg, vol. 55, pp. 36-41; discussion 41-2, Jul 2005.
[96] M. S. Lee, "GraftJacket augmentation of chronic Achilles tendon ruptures," Orthopedics, vol. 27, pp. s151-3, Jan 2004.
[97] D. J. Wainwright, "Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns," Burns, vol. 21, pp. 243-8, Jun 1995.
[98] T. W. Gilbert, T. L. Sellaro, and S. F. Badylak, "Decellularization of tissues and organs," Biomaterials, vol. 27, pp. 3675-83, Jul 2006.
[99] F. Li, W. Li, S. Johnson, D. Ingram, M. Yoder, and S. Badylak, "Low-molecular-weight peptides derived from extracellular matrix as chemoattractants for primary endothelial cells," Endothelium, vol. 11, pp. 199-206, May-Aug 2004.
[100] H. W. Cheng, Y. K. Tsui, K. M. Cheung, D. Chan, and B. P. Chan, "Decellularization of chondrocyte-encapsulated collagen microspheres: a three-dimensional model to study the effects of acellular matrix on stem cell fate," Tissue Eng Part C Methods, vol. 15, pp. 697-706, Dec 2009.
[101] S. Wu, Y. Liu, S. Bharadwaj, A. Atala, and Y. Zhang, "Human urine-derived stem cells seeded in a modified 3D porous small intestinal submucosa scaffold for urethral tissue engineering," Biomaterials, vol. 32, pp. 1317-26, Feb 2011.
[102] J. Nigro, J. F. White, J. A. Ramshaw, D. N. Haylock, S. K. Nilsson, and J. A. Werkmeister, "The effect of bovine endosteum-derived particles on the proliferation of human mesenchymal stem cells," Biomaterials, vol. 31, pp. 5689-99, Jul 2010.
[103] K. H. Choi, B. H. Choi, S. R. Park, B. J. Kim, and B. H. Min, "The chondrogenic differentiation of mesenchymal stem cells on an extracellular matrix scaffold derived from porcine chondrocytes," Biomaterials, vol. 31, pp. 5355-65, Jul 2010.
[104] X. D. Chen, V. Dusevich, J. Q. Feng, S. C. Manolagas, and R. L. Jilka, "Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts," J Bone Miner Res, vol. 22, pp. 1943-56, Dec 2007.
[105] N. Datta, H. L. Holtorf, V. I. Sikavitsas, J. A. Jansen, and A. G. Mikos, "Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells," Biomaterials, vol. 26, pp. 971-7, Mar 2005.
[106] N. D. Evans, E. Gentleman, X. Chen, C. J. Roberts, J. M. Polak, and M. M. Stevens, "Extracellular matrix-mediated osteogenic differentiation of murine embryonic stem cells," Biomaterials, vol. 31, pp. 3244-52, Apr 2010.
[107] I. Aizman, C. C. Tate, M. McGrogan, and C. C. Case, "Extracellular matrix produced by bone marrow stromal cells and by their derivative, SB623 cells, supports neural cell growth," J Neurosci Res, vol. 87, pp. 3198-206, Nov 1 2009.
[108] N. C. Cheng, B. T. Estes, H. A. Awad, and F. Guilak, "Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix," Tissue Eng Part A, vol. 15, pp. 231-41, Feb 2009.
[109] R. A. Thibault, L. Scott Baggett, A. G. Mikos, and F. K. Kasper, "Osteogenic differentiation of mesenchymal stem cells on pregenerated extracellular matrix scaffolds in the absence of osteogenic cell culture supplements," Tissue Eng Part A, vol. 16, pp. 431-40, Feb 2010.
[110] D. Talbot, B. K. Shenton, A. L. Givan, G. Cavanagh, G. Proud, and R. M. Taylor, "Flow cytometric crossmatching and outcome one year after renal transplantation," Transpl Int, vol. 5 Suppl 1, pp. S604-5, 1992.
[111] "http://www.semrock.com/flow-cytometry.aspx."
[112] K. Kato and A. Radbruch, "Isolation and characterization of CD34+ hematopoietic stem cells from human peripheral blood by high-gradient magnetic cell sorting," Cytometry, vol. 14, pp. 384-92, 1993.
[113] S. Miltenyi, W. Muller, W. Weichel, and A. Radbruch, "High gradient magnetic cell separation with MACS," Cytometry, vol. 11, pp. 231-8, 1990.
[114] H. Hsin-Ling, "Evaluation of Anti-cancer Drugs for Colon Cancers by Analyzing the Population of Cancer Stem Cells," Master thesis, 2010.
[115] "http://www.miltenyibiotec.com/en/NN_736_MACS_Cell_Separation_the_principle_1.aspx#2."
[116] A. H. Coons, Creech, H.J., Jones, R.N. and Berliner, E., "The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody," J. Immunol, vol. 45, p. 159, 1942.
[117] V. F. W. A. Kr. von dem Borne A. E. G., Oosterhof F., von Riesz E., Brutel de la Rivière A., "A Simple Immunofluorescence Test for the Detection of Platelet Antibodies," British Journal of Haematology, vol. 39, pp. 197-207, 1978.
[118] S. R. P.N., "(http://www.microrao.com)."
[119] "http://www.mgormerod.com/page123.html."
[120] T. Wang and M. J. Brown, "mRNA quantification by real time TaqMan polymerase chain reaction: validation and comparison with RNase protection," Anal Biochem, vol. 269, pp. 198-201, Apr 10 1999.
[121] K. A. Kreuzer, A. Bohn, J. Lupberger, J. Solassol, P. le Coutre, and C. A. Schmidt, "Simultaneous absolute quantification of target and control templates by real-time fluorescence reverse transcription-PCR using 4-(4’’-dimethylaminophenylazo)benzoic acid as a dark quencher dye," Clin Chem, vol. 47, pp. 486-90, Mar 2001.
[122] M. L. Smit, B. A. Giesendorf, J. A. Vet, F. J. Trijbels, and H. J. Blom, "Semiautomated DNA mutation analysis using a robotic workstation and molecular beacons," Clin Chem, vol. 47, pp. 739-44, Apr 2001.
[123] N. Thelwell, S. Millington, A. Solinas, J. Booth, and T. Brown, "Mode of action and application of Scorpion primers to mutation detection," Nucleic Acids Res, vol. 28, pp. 3752-61, Oct 1 2000.
[124] M. Emig, S. Saussele, H. Wittor, A. Weisser, A. Reiter, A. Willer, U. Berger, R. Hehlmann, N. C. Cross, and A. Hochhaus, "Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR," Leukemia, vol. 13, pp. 1825-32, Nov 1999.
[125] V. Blaschke, K. Reich, S. Blaschke, S. Zipprich, and C. Neumann, "Rapid quantitation of proinflammatory and chemoattractant cytokine expression in small tissue samples and monocyte-derived dendritic cells: validation of a new real-time RT-PCR technology," J Immunol Methods, vol. 246, pp. 79-90, Dec 1 2000.
[126] A. D. Billiau, H. Sefrioui, L. Overbergh, O. Rutgeerts, J. Goebels, C. Mathieu, and M. Waer, "Transforming growth factor-beta inhibits lymphokine activated killer cytotoxicity of bone marrow cells: implications for the graft-versus-leukemia effect in irradiation allogeneic bone marrow chimeras," Transplantation, vol. 71, pp. 292-9, Jan 27 2001.
[127] Y. Welte, J. Adjaye, H. R. Lehrach, and C. R. Regenbrecht, "Cancer stem cells in solid tumors: elusive or illusive?," Cell Commun Signal, vol. 8, p. 6, 2010.
[128] K. Ieta, F. Tanaka, N. Haraguchi, Y. Kita, H. Sakashita, K. Mimori, T. Matsumoto, H. Inoue, H. Kuwano, and M. Mori, "Biological and genetic characteristics of tumor-initiating cells in colon cancer," Ann Surg Oncol, vol. 15, pp. 638-48, Feb 2008.
[129] S. V. Shmelkov, J. M. Butler, A. T. Hooper, A. Hormigo, J. Kushner, T. Milde, R. St Clair, M. Baljevic, I. White, D. K. Jin, A. Chadburn, A. J. Murphy, D. M. Valenzuela, N. W. Gale, G. Thurston, G. D. Yancopoulos, M. D’’Angelica, N. Kemeny, D. Lyden, and S. Rafii, "CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors," J Clin Invest, vol. 118, pp. 2111-20, Jun 2008.
[130] C. Dittfeld, A. Dietrich, S. Peickert, S. Hering, M. Baumann, M. Grade, T. Ried, and L. A. Kunz-Schughart, "CD133 expression is not selective for tumor-initiating or radioresistant cell populations in the CRC cell line HCT-116," Radiother Oncol, vol. 94, pp. 375-83, Mar 2010.
[131] Z. F. Yang, P. Ngai, D. W. Ho, W. C. Yu, M. N. Ng, C. K. Lau, M. L. Li, K. H. Tam, C. T. Lam, R. T. Poon, and S. T. Fan, "Identification of local and circulating cancer stem cells in human liver cancer," Hepatology, vol. 47, pp. 919-28, Mar 2008.
[132] M. Leader, J. Patel, C. Makin, and K. Henry, "An analysis of the sensitivity and specificity of the cytokeratin marker CAM 5.2 for epithelial tumours. Results of a study of 203 sarcomas, 50 carcinomas and 28 malignant melanomas," Histopathology, vol. 10, pp. 1315-24, Dec 1986.
[133] "http://www.leinco.com/immunohistochemistry."
[134] A. Banerjee, M. Arha, S. Choudhary, R. S. Ashton, S. R. Bhatia, D. V. Schaffer, and R. S. Kane, "The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells," Biomaterials, vol. 30, pp. 4695-9, Sep 2009.
[135] C. C. Anamelechi, G. A. Truskey, and W. M. Reichert, "Mylar and Teflon-AF as cell culture substrates for studying endothelial cell adhesion," Biomaterials, vol. 26, pp. 6887-96, Dec 2005.
[136] P. Y. Dankers, M. C. Harmsen, L. A. Brouwer, M. J. van Luyn, and E. W. Meijer, "A modular and supramolecular approach to bioactive scaffolds for tissue engineering," Nat Mater, vol. 4, pp. 568-74, Jul 2005.
[137] M. Lee, J. C. Dunn, and B. M. Wu, "Scaffold fabrication by indirect three-dimensional printing," Biomaterials, vol. 26, pp. 4281-9, Jul 2005.
[138] A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, "Matrix elasticity directs stem cell lineage specification," Cell, vol. 126, pp. 677-89, Aug 25 2006.
指導教授 樋口亞绀(Akon Higuchi) 審核日期 2012-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明