博碩士論文 993204026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.117.91.153
姓名 黃致翔(Chih-hsiang Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用變溫及變壓吸附捕獲電廠煙道氣中二氧化碳之模擬
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以透過變溫及變壓吸附分離程序處理發電後所產生之煙道氣作為吸附設備模擬的對象(15.03% CO2和84.97% N2),所使用的吸附劑為依台電綜合研究所配方製備的聚苯胺固態CO2吸附劑,目的為將二氧化碳濃縮(>90%)回收,以利之後儲存並減少二氧化碳排放至大氣中,減少溫室氣體的排放。
模擬程式中使用了method of lines結合upwind differences和cubic spline approximation,再以ODEPACK套裝軟體中之LSODE程式對時間作積分,估計出下段時間的濃度、溫度及壓力,之後一直重複循環計算到系統達到週期性穩態為止。
本研究使用了四種不同的吸附分離程序,分別為單塔五步驟變溫吸附程序、單塔兩步驟變壓吸附程序、單塔三步驟變壓吸附程序和雙塔六步驟變壓吸附程序。最佳的操作條件是由經過不同的操作變因探討後得到的,例如:吸脫附溫度、進料壓力、塔長及步驟時間等。
經過變因探討後得到的最佳程序為單塔三步驟變壓吸附程序,最佳操作條件為進料壓力6.0 atm、同向減壓壓力1.0 atm、逆向減壓壓力0.1 atm、塔長 98.3 cm、進料時間1200 s、同向減壓時間10 s及逆向減壓時間500 s。在此條件下其結果為二氧化碳濃度97.13%,回收率87.26%。捕捉每噸二氧化碳所需能耗為1.39 GJ/tonCO2。
摘要(英) In this simulation study, several adsorption process is utilized to separate CO2 and N2 from the power plant flue gas(15.03% CO2和84.97% N2) with solid polyaniline sorbent. CO2 can be recovered and sequestrated to reduce green- house-gas effects.
The method of lines is utilized, combined with upwind differences, cubic spline approximation and LSODE of ODEPACK software to solve the problem. The concentration, temperature, and adsorption quantity in the bed are integrated with respect to time by LSODE of ODEPACK software. The simulation is stopped when the system reaches a cyclic steady state.
Four different processes have been used in this study, single-bed five-step temperature swing adsorption (TSA) process, single-bed two-step pressure swing adsorption (PSA) process, single-bed three-step PSA process and dual-bed six-step PSA process. The optimal operating condition is obtained by varying the operating variables, such as adsorption temperature, desorption temperature, feed pressure, bed length, step time, etc.
After the variables discussion, the best process is single-bed three-step PSA process and the best operating condition is feed pressure 6.0 atm, cocurrent depressurization pressure 1.0 atm, vacuum pressure 0.1 atm, bed length 98.3 cm and step time at 1200, 10 and 500 s. The results of the best operating condition are 97.13% purity and 87.26% recovery of CO2 with an energy consumption of 1.39 GJ/tonCO2.
關鍵字(中) ★ 變溫吸附
★ 二氧化碳
★ 煙道氣
★ 變壓吸附
關鍵字(英)
論文目次 摘要………………………………………………………………………i
ABSTRACT……………………………………………………………iii
誌謝…………………………………………………...…………...iv
目錄……………………………………………………………..….v
圖目錄………...……….…………...………...………ix
表目錄………...………………………...………...……..xiii
第一章、緒論………………………………………………………….1
第二章、簡介及文獻回顧…………………………………….…4
2-1 吸附之簡介……………………………….…………..4
2-1-1 吸附基本原理……………………...…………………4
2-1-2 吸附劑及其選擇性……………………………………...5
2-1-3 變壓吸附基本操作步驟…………………………...6
2-2 文獻回顧………………………………………………...8
2-2-1變壓吸附程序之發展及改進……………………………………8
2-2-2 理論之回顧…………………………………………………….12
2-2-3 利用吸附程序處理煙道氣之相關文獻……………………….14
第三章、理論…………………………………………………..19
3-1 基本假設……………………………………………...20
3-2 統制方程式…………………………………………….21
3-3 吸附平衡關係式………………………………….…25
3-4 參數推導………………………………………………….26
3-4-1 聚苯胺固態CO2吸附劑對CO2的吸附熱……………………26
3-4-2 軸向分散係數………………………………………………….27
3-4-3 熱傳係數……………………………………………………….29
3-5 邊界條件與流速…………………………………….31
3-5-1 邊界條件與節點流速………………………………………….31
3-5-2 閥公式………………………………………………………….32
3-6求解步驟……………………………………………………33
第四章、製程描述…………………………………………………..36
4-1 突破曲線製程…………………………………………….37
4-2 單塔變溫吸附製程………………………………….38
4-3 單塔變壓吸附製程………………………………….…40
4-4 雙塔變壓吸附製程………………………………………….43
4-5 氣體性質與吸附參數………………………………………….45
4-6 程式驗證…………………………………………………….48
第五章、數據分析與結果討論……………………………….50
5-1 突破曲線程序之模擬…………………………………….50
5-1-1 進料組成對突破曲線程序之影響…………………………….51
5-1-2 進料流率對突破曲線程序之影響…………………………….52
5-1-3 操作溫度對突破曲線程序之影響…………………………….53
5-2 單塔變溫吸附程序之模擬………………….54
5-2-1 吸附溫度對單塔變溫吸附程序之影響……………………….56
5-2-2 脫附溫度對單塔變溫吸附程序之影響……………………….59
5-2-3 進料壓力對單塔變溫吸附程序之影響……………………….62
5-2-4 進料時間對單塔變溫吸附程序之影響……………………….65
5-2-5 沖洗時間對單塔變溫吸附程序之影響……………………….68
5-3 單塔變壓吸附程序之模擬………………………………….71
5-3-1 單塔兩步驟變壓程序之變因探討…………………………….73
5-3-1-1 進料壓力對單塔兩步驟變壓吸附程序之影響………...73
5-3-1-2 進料時間對單塔兩步驟變壓吸附程序之影響………...76
5-3-1-3 逆向減壓時間對單塔兩步驟變壓吸附程序之影響…...79
5-3-2 單塔三步驟變壓程序之變因探討…………………………….82
5-3-2-1 進料壓力對單塔三步驟變壓吸附程序之影響………...82
5-3-2-2 同向減壓壓力對單塔三步驟變壓吸附程序之影響…...86
5-3-2-3 逆向減壓壓力對單塔三步驟變壓吸附程序之影響…...90
5-3-2-4 吸附塔塔長對單塔三步驟變壓吸附程序之影響……...94
5-3-2-5 進料時間對單塔三步驟變壓吸附程序之影響………...98
5-3-2-6 同向減壓時間對單塔三步驟變壓吸附程序之影響….102
5-3-2-7 逆向減壓時間對單塔三步驟變壓吸附程序之影響….106
5-4 雙塔變壓吸附程序之模擬………...………...……….....110
5-4-11P/F ratio對雙塔六步驟變壓吸附程序之影響…….…….111
5-5 最佳結果討論…...………...………...…………...……115
5-6 能耗之計算…...………………...…………...………118
第六章、結論………...………...…………...………..120
符號說明………...……………………...………...….122
參考文獻………...……………...…………...………...….126
附錄A、流速之估算方法………………...…………...……...132
附錄B、各數據詳細資料………………...…………...………136
參考文獻 [1] C.W. Skarstrom, U.S. Patent 2,944,627 (1960), to Esso Research and Engineering Company.
[2] P. Guerin de Montgareuil and D. Domine, U.S. Patent 3,155,468 (1964), to Societe L’air Liquide, Paris.
[3] R. T. Yang, Gas Separation by Adsorption Processes, Imperial College Press., London, 1997.
[4] N.H. Berlin, U.S. Patent 3,280,536 (1966), to Esso Research and Engineering Company.
[5] G. Heinze, Belgian Patent 613,267 (1962), to Farbenfabriken Bayer A. G.
[6] D.E. Kowler and R.H. Kadlec, “The Optimal Control of a Periodic Adsorber: Part I. Experiment”, AIChE J., Vol. 18, pp. 1207-1212, 1972.
[7] T. Tamura, U.S. Patent 3,797,201 (1974), to T. Tamura, Tokyo, Japan.
[8] A. Furderer and E. Rudelstorfer, U.S. Patent 3,986,849 (1976), to Union Carbide Corporation.
[9] R. Kumar, W.C. Kratz, D.E. Guro, D.L. Rarig and W.P. Schmidt, “Gas Mixture Fractionation to Produce Two High Purity Products by Pressure Swing Adsorption”, Sep. Sci. and Technol., Vol. 27, pp. 509-522, 1992.
[10] D. Diagne, M. Goto and T. Hirose, “New PSA Process with Intermediate Feed Inlet Position Operated with Dual Refluxes-Application to Carbon-Dioxide Removal and Enrichment”, J. Chem. Eng. Japan, Vol. 27, pp. 85-89, 1994.
[11] B.K. Na, K.K. Koo, H. Lee and H.K. Song, “Effect of Rinse and Recycle Methods on The Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon”, Ind. Eng. Chem. Res., Vol. 41, pp. 5498-5503, 2002.
[12] C.H. Lee, J. Yang and H. Ahn, “Effects of Carbon-to-Zeolite Ratio on Layered Bed H2 PSA For Coke Oven Gas”, AIChE J., Vol. 45, pp. 535-545, 1999.
[13] P. Xiao, J. Zhang, P. Webley, G. Li, R. Singh and R. Todd, “Capture of CO2 From Flue Gas Streams with Zeolite 13X by Vacuum-Pressure Swing Adsorption”, Adsorption, Vol. 14, pp. 575-582, 2008.
[14] J.G. Jee, M.B. Kim and C.H. Lee, “Adsorption Characteristics of Hydrogen Mixtures in a Layered Bed: Binary, Ternary, and Five-Component Mixtures”, Ind. Eng. Chem. Res., Vol. 40, pp. 868-878, 2001.
[15] Y. Takamura, S. Narita, J. Aoki, S. Hironaka and S. Uchida, “Evaluation of Dual-Bed Pressure Swing Adsorption For CO2 Recovery from Boiler Exhaust Gas”, Separation and Purification Technology, Vol. 24, pp. 519-528, 2001.
[16] P.H. Turnock and R.H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption”, AIChE J., Vol. 17, pp. 335-342, 1971.
[17] L.H. Shendalman and J.E. Mitchell, “A Study of Heatless Adsorption in The Model System CO2 in He(I)”, Chem. Eng. Sci., Vol. 27, pp. 1449-1458, 1972.
[18] E. Glueckauf and J.I. Coates, “Theory of Chromatography, Part IV: The Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and on the Effectiveness of Separation”, J. Chem. Soc., pp. 1315–1321, 1947.
[19] S. Nakao and M. Suzuki, “Mass Transfer Coefficient in Cyclic Adsorption and Desorption”, J. Chem. Eng. Japan, Vol. 16, pp. 114-119, 1983.
[20] M.M. Hassan, D.M. Ruthven and N.S. Raghavan, “Air Separation by Pressure Swing Adsorption on a Carbon Molecular Sieve”, Chem. Eng. Sci., Vol. 41, pp. 1333-1343, 1986.
[21] R.T. Yang and S.J. Doong, “Gas Separation by Pressure Swing Adsorption: A Pore- Diffusion Model for Bulk Separation”, AIChE J., Vol. 31, pp. 1829–1842, 1985.
[22] S.J. Doong and R.T. Yang, “Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models”, AIChE J., Vol. 32, pp. 397-410, 1986.
[23] S.J. Doong and R.T. Yang, “Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption”, AIChE J., Vol. 33, pp. 1045-1049, 1987.
[24] M.M. Hassan, N.S. Raghvan and D.M. Ruthven, “Pressure Swing Air Separation on a Carbon Molecular Sieve. II: Investigation of a Modified Cycle with Pressure Equalization and No Purge”, Chem. Eng. Sci., Vol. 42, pp. 2037-2043, 1987.
[25] S. Farooq and D.M. Ruthven, “A Comparison of Linear Driving Force and Pore Diffusion-Models for a Pressure Swing Adsorption Bulk Separation Process”, Chem. Eng. Sci., Vol. 45, pp. 107-115, 1990.
[26] N. Tlili, G. Grevillot and C. Vallieres, “Carbon Dioxide Capture and Recovery by means of TSA and/ or VSA”, Int. J. Greenhouse Gas Control, Vol. 3, pp. 519-527, 2009.
[27] M.G. Plaza, S. Garcia, F. Rubiera, J.J. Pis, C. Pevida, “Post-combustion CO2 Capture with a Commercial Activated Carbon: Comparison of Different Regeneration Strategies”, Chem. Eng. J., Vol. 163, pp. 41-47, 2010.
[28] B. Dutcher, H. Adidharma and M. Radosz, “Carbon Filter Process for Flue-Gas Carbon Capture on Carbonaceous Sorbents: Steam-Aided Vacuum Swing Adsorption Option”, Ind. Eng. Chem. Res., Vol. 50, pp. 9696-9703, 2011.
[29] J. Mérel, M. Clausse and F. Meunier, “Carbon Dioxide Capture by Indirect Thermal Swing Adsorption Using 13X Zeolite”, Environ. Prog., Vol. 25, pp. 327–333, 2006.
[30] J. Mérel, M. Clausse and F. Meunier, “Experimental Investigation on CO2 Post- Combustion Capture by Indirect Thermal Swing Adsorption Using 13X and 5A Zeolites”, Ind. Eng. Chem. Res., Vol. 47, pp.209–215, 2008.
[31] M. Clausse, J. Mérel and F. Meunier, “Numerical Parametric Study on CO2 Capture by Indirect Thermal Swing Adsorption”, Int. J. Greenhouse Gas Control, Vol. 5, pp. 1206- 1213, 2011.
[32] E.S. Kikkinides, R.T. Yang and S.H. Cho, “Concentration and Recovery of CO2 from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., Vol. 32, pp. 2714–2720, 1993.
[33] K.T. Chue, J.N. Kim, Y.J. Yoo, S.H. Cho and R.T. Yang, “Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., Vol. 34, pp. 591–598, 1995.
[34] M. Ishibashi, H.Ota, N. Akutsu, S. Umeda, M. Tajika, J. Izumi, A. Yasutake, T. Kabata and Y. Kageyama, “Technology for Removing Carbon Dioxide from Power Plant Flue Gas by the Physical Adsorption Method”, Energy Convers. Manage. Vol. 37, pp. 929–993, 1996.
[35] B.K. Na, K.K. Koo, H.M. Eum, H. Lee and H.K. Song, “CO2 Recovery from Flue Gas by PSA Process Using Activated Carbon”, Korean J. Chem. Eng., Vol. 18, pp. 220–227, 2001.
[36] V.G. Gomes and K.W.K. Yee, “Pressure Swing Adsorption for Carbon Dioxide Sequestration from Exhaust Gases, Separation and Purification Technology, Vol. 28, pp. 161–171, 2002.
[37] J.H. Park, H.T. Beum, J.N. Kim and S.H. Cho, “Numerical Analysis on the Power Consumption of the PSA Process for Recovering CO2 from Flue Gas”, Ind. Eng. Chem. Res., Vol. 41, pp.4122–4131, 2002.
[38] D. Ko, R. Siriwardane and L.T. Biegler, “Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2 Sequestration”, Ind. Eng. Chem. Res., Vol. 42, pp. 339–348, 2003.
[39] D. Ko, R. Siriwardane and L.T. Biegler, “Optimization of Pressure Swing Adsorption and Fractionated Vacuum Pressure Swing Adsorption Processes for CO2 Capture”, Ind. Eng. Chem. Res., Vol. 44, pp. 8084–8094, 2005.
[40] S.P. Reynolds, A.D. Ebner and J.A. Ritter, “New Pressure Swing Adsorption Cycles for Carbon Dioxide Sequestration”, Adsorption, Vol. 11, pp. 531–536, 2005.
[41] S.P. Reynolds, A.D. Ebner and J.A. Ritter, “Stripping PSA Cycles for CO2 Recovery from Flue Gas at High Temperature Using a Hydrotalcite-Like Adsorbent”, Ind. Eng. Chem. Res., Vol. 45, pp. 4278–4294, 2006.
[42] G. Li, P. Xiao, P. Webley, J. Zhang, R. Singh and M. Marshall, “Capture of CO2 from High Humidity Flue Gas by Vacuum Swing Adsorption with Zeolite 13X”, Adsorption, Vol. 14, pp.415–422, 2008.
[43] P. Xiao, J. Zhang, P. Webley, G. Li, R. Singh and R. Todd, “Capture of CO2 from Flue Gas Streams with Zeolite 13X by Vacuum-Pressure Swing Adsorption”, Adsorption, Vol. 14, pp. 575–582, 2008.
[44] J. Zhang, P.A. Webley and P. Xiao, “Effect of Process Parameters on Power Requirements of Vacuum Swing Adsorption Technology for CO2 Capture from Flue Gas”, Energy Convers. Manage., Vol. 49, pp. 346–356, 2008.
[45] V. Mulgundmath and F.H. Tezel, “Optimisation of Carbon Dioxide Recovery from Flue Gas in a TPSA System”, Adsorption, Vol. 16, pp. 587-598, 2010.
[46] Z. Liu, C.A. Grande, P. Li, J. Yu and A.E. Rodrigues, “Multi-Bed Vacuum Pressure Swing Adsorption for Carbon Dioxide Capture from Flue Gas”, Separation and Purification Technology, Vol. 81, pp. 307-317, 2011.
[47] T.L.P. Dantsa, F.M.T. Luna, I.J. Silva Jr., A.E.B. Torres, D.C.S. de Azevedo, A.E. Rodrigues and R.F.P.M. Moreira, “Carbon Dioxide–Nitrogen Separation through Pressure Swing Adsorption”, Chem. Eng. J., Vol. 172, pp. 698-704, 2011.
[48] S.V. Sivakumar and D.P. Rao, “Modified Duplex PSA. 1. Sharp Separation and Process Intensification for CO2−N2−13X Zeolite System”, Ind. Eng. Chem. Res., Vol. 50, pp. 3426–3436, 2011.
[49] Martunus, Z. Helwani, A.D. Wiheeb, J. Kim and M.R. Othman, “In Situ Carbon Dioxide Capture and Fixation from a Hot Flue Gas”, Int. J. Greenhouse Gas Control, Vol. 6, pp. 179-188, 2012.
[50] J.M. Smith, H.C. Van Ness and M.M. Abbott, Chemical Engineering Thermodynamics, Sixth Edition, McGraw-Hill, New York, 2001.
[51] C.Y. Wen and L.T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975.
[52] R.B. Bird, W.E. Stewart and E.N. Lightfoot, Transport Phenomena, Second Edition, Wiley, New York, 2007.
[53] E.N. Fuller, P.D. Schettler and J.C. Giddings, “A Comparison of Methods for Predicting Gaseous Diffusion Coefficients”, J. Gas Chromatogr., Vol. 3, pp. 222-227, 1965.
[54] E.N. Fuller, P.D. Schettler and J.C. Giddings, “A New Method for Prediction of Binary Gas-Phase Diffusion Coefficients”, Ind. Eng. Chem. Res., Vol. 58, pp. 18-27, 1966.
[55] W.L. McCabe, J.C. Smith and P. Harriott, Unit Operations of Chemical Engineering, Seventh Edition, McGraw-Hill Inc., New York, 2005.
[56] W.H. McAdams, Heat Transmission, Third Edition, McGraw-Hill Inc., New York, 1954.
指導教授 周正堂、楊閎舜(Cheng-tung Chou) 審核日期 2012-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明