博碩士論文 993204067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.137.203.53
姓名 陳冠銘(Kuan-ming Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 高壓系統下親/疏水性吸附劑之吸附行為與再生能耗探討
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 壓縮乾燥空氣係經空氣壓縮機與穩壓儲存桶降溫後,先經冷凍乾燥設備除濕,再以無熱式或加熱式雙塔吸附乾燥設備將高壓空氣乾燥至壓力露點溫度-40℃或-70℃。為了尋找具節能且適用於壓縮空氣吸附乾燥設備之吸附劑,本研究於高壓系統狀態下,探討不同吸附劑表面特性對吸附/脫附現象之影響與再生能耗分析。其中4A、13X、Al2O3、ZSM-5-260、ZSM-5-38作為主要吸附劑應用於壓縮空氣系統之乾燥設備中,並進行減少能耗的脫附方法研究,以找到最適當之吸附劑以及吸附條件。並尋找最佳能耗的條件並符合高壓空氣使用之需求,以利將來應用於雙塔式加熱再生乾燥設備中。故本研究成果可提供壓縮空氣乾燥設備選取吸附劑時之節能參考。實驗結果顯示在高壓系統下活性氧化鋁有最低之能耗。
摘要(英) Compressed air is usually produced by air compressor, cooled down with the pressure-stabilized storage barrels and primarily dehumidified via refrigeration dryer. And then a heatless or heat-driven dual-bed adsorption dryer futhermore reduces moisture to reach dew point temperature of -40℃ or -70 ℃. In order to develop a high-efficiency energy-saving adsorbent in adsorption dryer, this study was to investigate the adsorption and desorption behavior and regeneration energy consumption affected by adsorbents characteristic at high pressure status. The adsorbents of 4A, 13X, ZSM-5-260, Al2O3 and ZSM-5-38 were measured in the study to find the lowest energy consumption and optimal desorption method. The results could be applied to screen the optimum adsorbents for high-efficiency thermal-regeneration adsorption dryer in compressed air system. In this research, experement results show that the adsorbent of the lowest regeneration energy consumption under high pressure system is activated alumina.
關鍵字(中) ★ 水汽吸附
★ 變溫吸附
★ 吸附乾燥機
關鍵字(英)
論文目次 摘要......i
ABSTRACT .ii
目錄......iv
圖目錄....vi
表目錄......ix
壹、 緒論...... 1
第二章、 簡介及文獻回顧......5
2-1 吸附式乾燥機簡介......5
2-2 吸附劑簡介 ......9
2-2-1沸石簡介......10
2-3 吸附原理之簡介......16
2-3-1 吸附種類......17
2-3-2變溫吸附法的基本原理......19
2-3-3 再生方式......20
2-3-4突破曲線......22
2-4 研究背景與目的......23
第三章、 研究方法......28
3-1 吸附劑種類 ......28
3-2 實驗設備與實驗方法......30
3-3 吸附與脫附之壓力與溫度操作參數......37
第四章、 結果與討論......38
4-1 親/疏水性吸附劑之吸附性能比較......38
4-2 親水性吸附劑之吸附行為比較......58
4-3 不同脫附流量對吸附行為影響......74
4-3-1 親水性吸附劑之不同脫附流量測試......74
4-3-2 疏水性吸附劑之不同流量脫附測試......79
4-4 吸附劑顆粒大小對吸附行為之影響......83
4-5 各吸附劑吸附行為與再生能耗之綜合討論......87
第五章、 結論與建議......93
參考文獻......95
參考文獻 源查核與節能技術暨能管員推動節能交流研討會論文集,96年。
2. Compressed Air system Market Assessment In the Public Service Electric and Gas Service Territory. Public Service Electric and Gas Company, AMSG 7537-001, 2001
3. 2010中國無熱再生吸附式壓縮空氣乾燥機產業規劃及發展預測報告。
4. 莊朝焮, 壓縮空氣供氣系統節能手冊, 財團法人中技社節能技術發展中心,89年。
5. 李大明,王傑明,李彩琴, 壓縮機技術,第 2 期,page 29-32(1997).
6. M. Kruk and M. Jaroniec, “Application of Large Pore MCM-41 Molecular Sieves To Improve Pore Size Analysis Using Nitrogen Adsorption ,” Langmuir, vol.13, pp.6267-6273 (1997)
7. C. Liang, T. Man, and M. Kruk, “Synthesis of Ultra-Large-Pore SBA-15 Silica with Two-Dimensional Hexagonal Structure Using Triisopropyl benzene As Micelle Expander ,” Chem. Mater., vol.21, pp.1144–1153, 2009
8. R. T. Yang, “Gas Separation by Adsorption Processes,” Butterworth, New York , 1987
9. U. S. EPA. “Zeolite: A Versatile Air Pollutant Adsorber ,” EPA-456/F-98-004 , 1998
10. K.C. Chan, Christopher Y.H. Chao , G.N. Sze-To , and K.S. Hui, “Performance predictions for a new zeolite 13X/CaCl2 composite adsorbent for adsorption cooling systems ,” Int. J. Heat Mass Transfer, vol.55, pp.3214–3224, 2012
11. 方建能,江支豪,陳惠芬,蘇建華, 臺灣鑛業,第 62 卷第 3 期,page 11-20 ,2010.
12. A. Gorbach, M. Stegmaier and G. Eigenberger, “ Measurement and Modeling of Water Vapor Adsorption on Zeolite 4A—Equilibria and Kinetics ” , Adsorption, vol.10, pp.29–46 , 2004
13. http://www.molecularsieve.org/Zeolite_Molecular_Sieve.htm (2011)
14. 游振經, 於陶瓷纖維紙上合成 ZSM-5 沸石與聚乙烯觸媒裂解之研究,國立中央大學化工與材料工程學系碩士論文(2004).
15. M. E. Swanson, H. L. Greene, and S. Qutubuddin, “Reactive Sorption of Chlorinated VOCs on ZSM-5 Zeolites at Ambient and Elevated Temperatures,” Appl. Catal., B: Enviromental, Vol. 52, pp.91-108 , 2004.
16. A. Salden and G. Eigenberger, “Multifunctional Adsorber/Reactor Concept for Waste-Air Purification,” Chem. Eng. Sci, Vol. 56, pp. 1605-1611, 2001.
17. R. L. Fonseca, A. Aranzabal, and P. Steltenpohl, “Performance of Zeolites and Product Selectivity in the Gas-Phase Oxidation of 1,2-Dichloroethane,” Catal. Today, Vol. 62, pp. 367-377, 2000.
18. M. H. Stenzel, “ Remove Organics by Activated Carbon Adsorption”, Chemical Engineering Progress, Vol. 89, No. 7, pp. 36-43, 1993.
19. S. M. Ben-Shebil, “ Effect of heat of adsorption on the adsorptive drying of solvents at equilibrium in a packed bed of zeolite ”, Chem. Eng. J. vol.74, pp.197-204,1999.
20. P. Fastyn, W. Kornacki, T. Gierczak, J. Gawłowski, and J. Niedzielski,“Adsorption of water vapour from humid air by selected carbon adsorbents”, J. Chromatogr. A, vol.1078, pp7–12, 2005.
21. Metcalf and Eddy, “Wastewater engineering treatment and resuse, ” 4th ed., McGraw-Hill, New York, 2003.
22. M. N. Golubovic and W. M. Worek, “INFLUENCE OF ELEVATED PRESSURE ON SORPTION IN DESICCANT WHEELS”, Numerical Heat Transfer, Part A, vol:45, pp. 869–886, 2004
23. A. Srinivasan and M. W. Grutzeck, “The Adsorption of SO2 by Zeolites Synthesized from Fly Ash,” Environ. Sci. Technol., Vol. 33, No. 9, pp. 1464-1469 , 1999.
24. T. Kopac, “Non-Isobaric Adsorption Analysis of SO2 on Molecular Sieve 13X and Activated Carbon by Dynamic Technique,” Chem. Eng. Process., Vol. 38, pp. 45-53, 1999.
25. S. V. Gollakota and C. D. Chriswell, “Study of Adsorption Process Using Silicalite for Sulfur Dioxide Removal form Combustion Gases,” Ind. Eng. Chem. Res., Vol. 27, pp.139-143, 1988.
26. E. S. Kikkinides and R. T. Yang, “Gas Separation and Purification by Polymeric Adsorbents: Flue Gas Desulfurization and SO2 Recovery with Styrenic Polymers,” Ind. Eng. Chem. Res., Vol. 32, pp. 2365-2372 , 1993.
27. S. G. Deng and Y. S. Lin,“Sulfur Dioxide Sorption Properties and Thermal Stability of Hydrophobic Zeolites,” Ind. Eng. Chem. Res., Vol. 34, pp. 4063-4070 , 1995.
28. S. W. Blocki,“Hydrophobic Zeolite Adsorbent: A Proven Advancement in Solvent Separation Technology,” Environ. Prog., Vol. 12, pp. 226-230, 1993.
29. Yun, J. H. and D. K. Choi, “Adsorption of Organic Solvent Vapors on Hydrophobic Y-Type Zeolite,” AIChE J., Vol. 44, No. 6, pp.1344-1350, 1998.
30. T. Sano, N. Yamashita, Y. Iwami, K. Takeda, and Y. Kawakami “Estimation of dealumination rate of ZSM-5 zeolite by adsorption of water vapor”Zeolite s,Vol.16,258-264, 1996
31. P. G. Smirniotis and W. Zhang, “Effect of the Si/Al Ratio and of the Zeolite Structure on the Performance of Dealuminated Zeolites for the Reforming of Hydrocarbon Mixtures,” Industrial & Engineering Chemistry Research, Vol. 35, pp. 3055-3066 (1996).
32. R. V. Siriwardane, M. S. Shen, and E. P. Fisher, “Adsorption of CO2, N2, and O2 on Natural Zeolite,” Energy Fuels, Vol. 17, No.3, pp.571-576, 2003.
33. W.H. Lee and P.J. Reucroft, “Vapor adsorption on coal- and wood-based chemically activated carbons (I ) Surface oxidation states and adsorption of H2O ,” Carbon , vol.37, pp.7–14, 1999.
34. L. Qiu and V. Murashov, “Zeolite 4A: heat capacity and thermodynamic properties ,” Solid-State Sci., vol.2, pp.841–846 , 2000.
35. G. Landi, L. Lisi , R. Pirone, G. Russo and M. Tortorelli, “Effect of water on NO adsorption over Cu-ZSM-5 based catalysts”, Catal. Today, on line, 2012.
36. A. J. Fletcher, Y. Yuzak and K. M. Thomas, “Adsorption and desorption kinetics for hydrophilic and hydrophobic vapors on activated carbon”, Carbon,vol.44, pp.989–1004, 2006.
37. A.Gupta, V. Gaur, and N. Verma, “Breakthrough Analysis for Adsorption of Sulfur-Dioxide Over Zeolite,” Chem. Eng. Process., Vol.43, 9-22 , 2004.
38. J. C Atuonwu, J. Xin, G. van Stratena, H. C van Deventer, Antonius and J.B. van Boxtel,“Reducing energy consumption in food drying: opportunities in desiccant adsorption and other dehumidification strategies, ” Procedia Food Sci., vol.1, pp.1799 – 1805, 2011.
39. P. Scovazzo and A.J. Scovazzo, “Isothermal Dehumidification or gas drying Using vacuum sweep Dehumidification,” Appl. Therm. Eng., 2012
40. S.K. Seshadri, Y.S.Lin, “Synthesis and water vapor separation properties of puresilica and alumino silicate MCM-48membranes ,” Sep. Purif. Technol., vol.76 , pp.261–267, 2011.
41. A.E. Kabeel, “Adsorption–desorption operations of multilayer desiccant packed bed for dehumidification applications,” Renewable Energy vol.34, pp.255–265, 2009
42. K.S. Chang, H.C. Wang and T.W. Chung, “Effect of regeneration conditions on the adsorption dehumidification process in packed silica gel beds,” Appl. Therm. Eng., vol.24, pp.735–742, 2004.
43. A. Kodama, T. Hirayama, M. Goto, T. Hirose and R.E. Critoph, “The use of psychrometric charts for the optimization of a thermal swing desiccant wheel ,” Appl. Therm. Eng., vol.21, pp.1657-1674, 2001.
44. T. Yamamotoa, Y. H. Kimb, B. C. Kimb, A. Endoa, N. Thongprachana, and T. Ohmoria, “Adsorption characteristics of zeolites for dehydration of ethanol: Evaluation of diffusivity of water in porous structure ,” Chem. Eng. J., vol.181– 182,pp.443– 448, 2012.
45. K.R. Kim, M.S. Lee, S. Paek, S.P. Yim, D.H. Ahn, H. Chung, “Adsorption tests of water vapor on synthetic zeolites for an atmospheric detritiation dryer ,” Radiat. Phys. Chem., vol.76, pp.1493–1496 , 2007.
46. T. Wajima, K. Munakata, T. Takeishi , K. Hara , K. Wada, K. Katekari, K. Inoue, Y. Shinozaki, and K. Mochizuki, “Adsorption characteristics of water vapor on honeycomb adsorbents,” J. Nucl. Mater., Vol. 417, Issues 1–3, pp.1166–1169 , 2011.
47. ISO 7183 2007 Compressed-air dryer- Specifications and Testing
48. S. Ghorai and K.K. Pant, “Investigations on the column performance of fluoride adsorption by activated alumina in a fixed-bed,” Chem. Eng. J., vol.98, pp.165–173 , 2004.
指導教授 康育豪、周正堂(Cheng-tung Chou) 審核日期 2012-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明