參考文獻 |
Reference
1. Alper, A.M., High Temperature Oxides: Magnesia, alumina, beryllia ceramics: fabrication, characterization, and properties. 1970: Academic Press.
2. Itoh, T., Crystallite growth of ZrO2 powder. Journal of Materials Science Letters, 1985. 4(8): p. 1029-1032.
3. Xu, G., et al., Homogeneous precipitation synthesis and electrical properties of scandia stabilized zirconia. Solid state communications, 2001. 121(1): p. 45-49.
4. Tani, E., M. Yoshimura, and S. SŌMiya, Formation of Ultrafine Tetragonal ZrO2 Powder Under Hydrothermal Conditions. Journal of the American Ceramic Society, 1983. 66(1): p. 11-14.
5. Kolen’’ko, Y.V., et al., Synthesis of ZrO2 and TiO2 nanocrystalline powders by hydrothermal process. Materials Science and Engineering: C, 2003. 23(6–8): p. 1033-1038.
6. Xie, Y., Preparation of Ultrafine Zirconia Particles. Journal of the American Ceramic Society, 1999. 82(3): p. 768-770.
7. Chang, H.L., P. Shady, and W.H. Shih, The effects of containers of precursors on the properties of zirconia powders. Microporous and mesoporous materials, 2003. 59(1): p. 29-34.
8. Nahas, N., et al., On the mechanism of zirconia textural stabilization by siliceous species during digestion under basic conditions. Journal of Catalysis, 2007. 247(1): p. 51-60.
9. Chuah, G.K., et al., The influence of preparation conditions on the surface area of zirconia. Applied Catalysis A: General, 1996. 145(1-2): p. 267-284.
10. Chuah, G., An investigation into the preparation of high surface area zirconia. Catalysis today, 1999. 49(1-3): p. 131-139.
11. Chuah, G. and S. Jaenicke, The preparation of high surface area zirconia--Influence of precipitating agent and digestion. Applied Catalysis A: General, 1997. 163(1-2): p. 261-273.
12. Chuah, G., S. Jaenicke, and T. Xu, Acidity of high surface area zirconia prepared from different precipitants. Surface and interface analysis, 1999. 28(1): p. 131-134.
13. 陳建偉, 高分散性奈米粒子合成及複合材料之制備. 2010.
14. Chen, C.-W., X.-S. Yang, and A.S.T. Chiang, An aqueous process for the production of fully dispersible t-ZrO2 nanocrystals. Journal of the Taiwan Institute of Chemical Engineers, 2009. 40(3): p. 296-301.
15. Clearfield, A., Process for the production of cubic crystalline zirconia. 1967, Google Patents.
16. Gimblett, F.G.R., A. Hussain, and K.S.W. Sing, Thermal and related studies of some basic zirconium salts. Journal of Thermal Analysis and Calorimetry, 1988. 34(4): p. 1001-1013.
17. Del Monte, F., W. Larsen, and J.D. Mackenzie, Chemical interactions promoting the ZrO2 tetragonal stabilization in ZrO2–SiO2 binary oxides. Journal of the American Ceramic Society, 2000. 83(6): p. 1506-1512.
18. Benedetti, A., G. Fagherazzi, and F. Pinna, Preparation and structural characterization of ultrafine zirconia powders. Journal of the American Ceramic Society, 1989. 72(3): p. 467-469.
19. Benedetti, A., et al., Structural properties of ultra-fine zirconia powders obtained by precipitation methods. Journal of Materials Science, 1990. 25(2): p. 1473-1478.
20. Lopez, E., et al., Vibrational and electronic spectroscopic properties of zirconia powders. Journal of Materials Chemistry, 2001. 11(7): p. 1891-1897.
21. Cai, J., et al., Temperature dependence of Raman scattering in stabilized cubic zirconia. Physical Review B, 1995. 51(1): p. 201-209.
22. Lutterotti, L. and P. Scardi, Simultaneous structure and size-strain refinement by the Rietveld method. Journal of Applied Crystallography, 1990. 23(4): p. 246-252.
23. Srinivasan, R., et al., Discrepancies in the crystal structures assigned to precipitated zirconia. Journal of Materials Science Letters, 1991. 10(6): p. 352-354.
24. Fagherazzi, G., et al., Rietveld analysis of the cubic crystal structure of Na-stabilized zirconia. Journal of materials research, 1997. 12(02): p. 318-321.
25. Li, M., et al., Phase transformation in the surface region of zirconia and doped zirconia detected by UV Raman spectroscopy. Physical Chemistry Chemical Physics, 2003. 5(23): p. 5326-5332.
26. Biaglow, A., et al., A 13C NMR Study of the Condensation Chemistry of Acetone and Acetaldehyde Adsorbed at the Bronsted Acid Sites in H-ZSM-5. Journal of Catalysis, 1995. 151(2): p. 373-384.
27. Wang, H., et al., Hydrated surface structure and its impacts on the stabilization of t-ZrO2. Journal of Solid State Chemistry, 2007. 180(10): p. 2790-2797.
28. Pokrovski, K., K.T. Jung, and A.T. Bell, Investigation of CO and CO2 Adsorption on Tetragonal and Monoclinic Zirconia. Langmuir, 2001. 17(14): p. 4297-4303.
29. Dobson, K.D. and A.J. McQuillan, In situ infrared spectroscopic analysis of the adsorption of aliphatic carboxylic acids to TiO2, ZrO2, Al2O3, and Ta2O5 from aqueous solutions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1999. 55(7-8): p. 1395-1405.
30. Nakayama, N. and T. Hayashi, Preparation of TiO2 nanoparticles surface-modified by both carboxylic acid and amine: Dispersibility and stabilization in organic solvents. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2008. 317(1-3): p. 543-550.
31. Wisser, F.M., et al., Detection of surface silanol groups on pristine and functionalized silica mixed oxides and zirconia. Journal of Colloid and Interface Science, 2012.
32. Teas, J.P., Graphic analysis of resin solubilities. Journal of paint technology, 1968. 40(516): p. 19-25.
33. Allan, F.M., Handbook of Solubility Parameters. 1983: p. page 153-157.
34. Beaucage, G., Small-Angle Scattering from Polymeric Mass Fractals of Arbitrary Mass-Fractal Dimension. Journal of Applied Crystallography, 1996. 29(2): p. 134-146.
35. Quemada, D., Rheology of concentrated disperse systems and minimum energy dissipation principle. Rheologica Acta, 1977. 16(1): p. 82-94.
36. Khabashesku, O. and S. Cooper, Synthesis with metal methacrylates as comonomers. 2011, Google Patents.
|