博碩士論文 993204018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.142.133.210
姓名 徐藝庭(Yi-ting Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化
(Electrical Stimulation to Promote Stem cell Differentiation using Conducting Polypyrrole Films)
相關論文
★ 利用穿膜胜肽改善帶正電高分子之轉染效率★ 以電刺激增進骨髓基質細胞骨分化之最佳化探討
★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究
★ 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染★ 電場對於複合奈米絲進行原位基因傳送之影響
★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送★ 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維
★ 利用寡聚精胺酸促進去氧寡核苷酸輸送★ 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞
★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送★ Indolicidin之色胺酸殘基對於轉染效率的影響
★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響★ 搭建可提供電刺激與機械刺激之生物反應器
★ 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體★ 開發促進傷口癒合之複合敷料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 聚吡咯(Polypyrrole, PPy)是一種具導電性的生醫材料。在本研究中,我們將PPy膜作為培養間葉幹細胞(mescnchymal stem cells, MSCs)的基材,觀察PPy對於細胞分化成骨的影響。
利用化學氧化的方式,以過硫酸銨(ammonium persulfate, APS)作為起始劑可以成功製備出PPy膜,藉由改變單體濃度及與起始劑的莫爾比,可控制所製備的PPy薄膜具有不同導電度。首先以傅立葉紅外光譜(Fourier transform infrared spectroscopy, FTIR)進行確認以PPy膜成功地沉積在基材上,在材料的物性分析中,我們使用四點探針來量測材料片電阻,並以掃描電子顯微鏡(scanning electron microscopy, SEM)和原子力顯微鏡(atomic force microscopy, AFM)觀察薄膜厚度及表面形貌。另外,藉由電子能譜儀(X-ray spectroscopy, XPS)探討薄膜表面元素組成,解析C1s的吸收峰後發現PPy薄膜的導電性質與高分子的分枝率成正比,推測合成高交聯度的聚吡咯可以提升高分子網絡結構的完整性。
最後我們將PPy膜用於培養大鼠的骨髓間葉幹細胞(RM1), MTT分析結果表明PPy膜是生物相容性材料,並且以骨分化培養液進行細胞培養,將RM1細胞誘導分化為成骨細胞。根據鹼性磷酸酶(alkaline phosphatase activity assay, ALP)的活性檢測顯示,PPy膜應具有提早分化成骨的效果。以茜素紅染色(Alizarin red stain, ARS) 及Calcium-o- cresolphthalein complexone的分析結果表明,聚吡咯薄膜能促進骨的礦化,以增加細胞外基質中的鈣沉積。最後,藉由PPy膜上施加恆定電場,探討電刺激成骨作用,結果顯示經過電刺激培養的細胞比起未經處理的PPy膜,其鈣沉積明顯增加,說明電刺激可能是能夠增進細胞骨化的效果。這些結果表明,聚吡咯具有優越的生物傳導性,適合作為骨組織修復用的生醫材料。
摘要(英) Polypyrrole (PPy) is a conductive biomaterial. In this study we would like to apply PPy films as substrates to culture mesenchymal stem cells (MSCs) to evaluate if PPy may promote osteogenesis. Chemical oxidation polymerization using ammonium persulfate (APS) as initiator was utilized to polymerize PPy films. By changing monomer concentrations and initiator ratio, films with different conductivity were fabricated. Fourier transform infrared spectroscopy (FTIR) was performed to confirm that PPy films were successfully deposited. Physical properties of PPy films were characterized using four point probe, scanning electron microscopy (SEM) and atomic force microscopy (AFM) to demonstrate sheet resistance, thickness, and surface morphology of PPy films, respectively. In addition, X-ray spectroscopy (XPS) was applied to investigate film composition. By diagnosing C1s peaks, PPy films with higher conductivities always had higher branch ratio, which should be due to that complete network would be formed by highly-crosslinked PPy chains.
These films were then applied for culturing rat bone marrow-derived mesenchymal stem cells (RM1). MTT assay suggested that PPy films were biocompatible materials. By using osteogenic medium, RM1 cells were differentiated into osteoblasts. The alkaline phosphatase (ALP) activity assay revealed that PPy films may accelerate osteogenesis. Alizarin red stain (ARS) and calcium-o-cresolphthalein complexone assays suggested that PPy film promoted mineralization to increase calcium deposition in extracellular matrix.
Finally, PPy films were subjected in a constant electric field to elucidate the effect of electrical stimulation on osteogenesis. Cells cultured on PPy films with electrical stimulation deposited more calcium than that cultured on untreated PPy films, suggesting that electrical stimulation may be able to improve cell differentiation. These results indicated that PPy should be an appropriate biomaterial with superior bioconductivity, which should be capable
III
of facilitating bone regeneration in tissue engineering application.
關鍵字(中) ★ 成骨
★ 間質幹細胞
★ 電刺激
★ 聚吡咯膜
★ 化學氧化聚合
關鍵字(英) ★ Osteogenesis
★ Mesenchymal stem cells
★ Electrical stimulation
★ Polypyrrole
★ Chemical oxidative polymerization
論文目次 摘要 .................................................................................................................................................. I
Abstract ...........................................................................................................................................II
目錄 ............................................................................................................................................... IV
表目錄 ........................................................................................................................................... VI
圖目錄 ..........................................................................................................................................VII
第一章序論 .................................................................................................................................. 1
1-1 前言 ......................................................................................................................... 1
第二章文獻回顧與理論基礎 ...................................................................................................... 3
2-1 組織工程 ................................................................................................................. 3
2-2 幹細胞 ..................................................................................................................... 4
2-2-1 間葉幹細胞(Mesenchymal stem cell, MSC) ............................................ 5
2-3 骨組織學 ................................................................................................................. 8
2-4 生醫材料 ............................................................................................................... 11
2-5 導電高分子 ........................................................................................................... 12
2-5-1 聚吡咯Polypyrrole .................................................................................. 13
2-5-2 聚吡咯的導電機制 ................................................................................... 14
2-5-3 導電高分子對細胞之文獻回顧 .............................................................. 16
2-5-4 電刺激對細胞分化之文獻回顧 .............................................................. 19
第三章實驗方法與設備 ............................................................................................................ 23
3-1 實驗藥品 ............................................................................................................... 23
3-2 實驗儀器 ............................................................................................................... 25
3-3 試藥製備與實驗方法 .......................................................................................... 25
3-3-1 Polypyrrole 製備 ......................................................................................... 25
V
3-3-2 細胞培養 ................................................................................................... 26
3-3-3 MTT 分析 .................................................................................................. 28
3-3-4 鹼性磷酸酶(Alkaline phosphatase assay, ALP) ..................................... 28
3-3-5 茜素紅染色(Alizarin red S,ARS) ......................................................... 29
3-3-6 Calcium-O-Cresolphthalein complexone ................................................. 29
3-3-7 乳酸脫氫酶(LDH)-CytoTox96R Non-Radioative cytotoxicity Assay . 30
3-4 實驗設計與架構 ................................................................................................... 31
3-4-1 合成導電高分子聚吡咯(Polypyrrole, PPy) ........................................... 31
3-4-2 導電高分子材料對於骨分化的影響 ..................................................... 31
3-4-3 電刺激對骨分化的影響 .......................................................................... 32
3-5 物性分析與結構鑑定 .......................................................................................... 33
3-5-1 結構之鑑定 ............................................................................................... 33
3-5-2 電性質分析 ............................................................................................... 34
3-5-3物理性質分析 ............................................................................................ 35
3-6 生物性質分析 ....................................................................................................... 35
3-6-1 MTT細胞活性測試 ................................................................................... 35
3-6-2 鹼性磷酸酶(Alkaline phosphatase assay, ALP) ..................................... 36
3-6-3 茜素紅染色(ARS) .................................................................................... 37
3-6-4 Calcium-O-Cresolphthalein complexone ................................................. 37
3-6-5 乳酸脫氫酶(lactate dehydrogenase , LDH)細胞毒性分析 ................... 37
3-6-6 骨分化之基因表現 ................................................................................... 38
第四章結果與討論 ..................................................................................................................... 40
4-1 導電性質(Conductivity) ....................................................................................... 40
4-2 掃描式電子顯微鏡(Scanning electron microscopy, SEM) ............................... 42
4-3 原子力顯微鏡(Atomic force microscopy, AFM) ............................................... 44
4-4 紅外線光譜分析(FTIR spectroscopy) ................................................................ 46
4-4 電子能譜儀(X-Ray spectroscopy , XPS) ............................................................ 48
4-5 生物相容性(Biocompatibility) .......................................................................... 57
4-6 導電性薄膜對於骨分化的影響 .......................................................................... 59
4-6-1 鹼性磷酸酶分析(Alkaline phosphatase assay, ALP) ............................. 59
4-6-2鈣沉積分析 ................................................................................................ 60
4-6-2-1茜素紅S染色分析 ......................................................................... 60
4-6-2-2 Ca離子定量分析(Calcium-O-Cresolphthalein complexone) . 61
4-6-3 骨分化之基因表現 ................................................................................... 65
4-7 電刺激促進細胞分化 .......................................................................................... 67
第五章 結論 ................................................................................................................................ 70
第六章、參考文獻 ....................................................................................................................... 71
表目錄
表一 導電高分子在生物方面的應用 ....................................................................................... 17
表二電刺激對細胞分化之文獻回顧 ....................................................................................... 22
表三配製不同濃度聚吡咯所需的單體用量 ........................................................................... 26
表四配製不同濃度聚吡咯所需的起始劑用量 ....................................................................... 26
表五beta Actin primer序列 ........................................................................................................ 38
表六Core binding factor 1 (Cbfa 1) primer序列 ...................................................................... 39
表七Ostocalcin (OC) primer序列 .............................................................................................. 39
圖目錄
圖2-1 骨組織工程之四大要素 .................................................................................................... 4
圖2-2 間葉幹細胞的分化可塑性示意圖 ................................................................................... 6
圖2-3 骨母細胞表型的發展 ........................................................................................................ 7
圖2-4 骨修復過程中新生骨組織的階段性替換情形 .............................................................. 7
圖2-5 Wolff理論下骨折癒合過程 ............................................................................................ 9
圖2-6 Wolff理論骨順應最大應力方向成長 ......................................................................... 9
圖2-7 將機械應力轉變為電流的壓電晶體與骨骼的壓電現象 ........................................... 10
圖2-8 模擬骨的壓電現象(磷灰石-膠原接面) ......................................................................... 10
圖2-9 芳香雜環類的導電高分子 ............................................................................................. 12
圖2-10 聚吡咯之反應機構 ........................................................................................................ 15
圖2-11 內皮細胞培養於聚吡咯基材上之型態(A)氧化態之聚吡咯(B) 經-0.5V 4小時還原之聚吡咯 .................................................................................................................................. 18
圖2-12 細胞培養於不同材料之型態(A)TCPS (B) 純材料PPy .......................................... 20
圖2-13 軸突長度統計圖(A)於PPy膜上通電刺激(B) 純材料PPy (C) 於溶液中通電刺激(D) TCPS ..................................................................................................................................... 20
圖2-14 外部刺激對細胞影響 .................................................................................................... 21
圖3-1 材料性質檢定之實驗設計圖 ......................................................................................... 32
圖3-2 電場與材料對細胞分化影響之實驗設計圖 ................................................................ 32
圖3-3 實驗裝置圖 ...................................................................................................................... 33
圖3-4 XPS原理示意圖 ................................................................................................................ 34
圖3-5 四點探針原理示意圖 ...................................................................................................... 34
圖3-6 MTT酵素反應式 ............................................................................................................ 36
圖3-7 pNPP酵素反應式 ........................................................................................................... 36
圖3-8 茜素紅分子式 .................................................................................................................. 37
圖4-1 四點探針量測不同條件之聚吡咯的表面片電阻 ........................................................ 41
圖4-2 不同條件之聚吡咯的表面片電導值 ............................................................................. 41
圖4-3 不同反應速率下聚合狀況(a) 正常速率;(b) 反應速率較快,增加聚合物之分枝 ....................................................................................................................................................... 42
圖4-4 掃描式電子顯微鏡觀察各種聚吡咯之表面結構 ........................................................ 43
圖4-5 掃描式電子顯微鏡觀察各種聚吡咯之截面厚度 ........................................................ 43
圖4-6 原子力顯微鏡觀察各種聚吡咯之表面粗糙度 ............................................................ 45
圖4-7 聚吡咯之IR圖譜 .............................................................................................................. 46
圖4-8 過氧硫酸銨之標準圖譜 .................................................................................................. 47
圖4-9 FTIR光譜測定不同條件下聚吡咯之結構 ..................................................................... 47
圖4-10聚吡咯鍍膜之XPS全光譜圖表面元素檢測 ................................................................ 49
圖4-11 (a)α-α’與α-β鍵結;(b) 聚合過程中,兩分枝高分子鍵結成網狀高分子 ............ 50
圖4-12 聚吡咯中的C1s之XPS光譜圖 ................................................................................... 51
圖4-13不同條件下的聚吡咯之C1s -XPS光譜圖 ................................................................... 54
圖4-14不同合成條件之聚吡咯分枝率隨著(a)單體濃度(b)起始劑比例改變的影響 ........ 55
圖4-15 聚吡咯高分子的分枝率與片電導之關係圖 .............................................................. 56
圖4-16電子在分子內與分子間的傳導 .................................................................................... 56
圖4-17 倒立式電子顯微鏡觀察老鼠間葉幹細胞之貼附行為 ............................................. 57
圖4-18 MTT分析各種材料之生物相容性 ............................................................................... 58
圖4-19 0~8天的鹼性磷酸酶分析結果 ..................................................................................... 60
圖4-20 茜素紅染色(細胞培養第11天) .................................................................................. 63
圖4-21 茜素紅染色(細胞培養第14天) .................................................................................. 63
圖4-22 Calcium-O-Cresolphthalein complexone分析7~28天之鈣沉積 ............................... 64
圖4-23 Calcium-O-Cresolphthalein complexone分析7~28天的鈣沉積(以細胞數進行正規化處理) ......................................................................................................................................... 64
圖4-24材料片電導與第14天時以細胞數正規化處理之鈣沉積關係圖 ............................ 65
圖4-25 第7、11天的Cbfa1基因表現量 ................................................................................ 66
圖4-26 第11天的Osteocalcin基因表現量 .............................................................................. 66
圖4-27 0.5M Py APS/Py 0.2經電刺激後培養第11天之相對鈣沉積量 ........................... 68
(b) .................................................................................................................................................. 69
圖4-28 RM1培養於三種聚吡咯表面,並經電刺激(1V, 4hr)後培養第11天之相對鈣沉積量(a)相對於TCPS控制組;(b) 相對於各個material控制組 .................................................. 69
參考文獻 1. Barth, A., "Uber histologishe Befunde nach Knochenimplantationen ". Archiv fur klinische Chirurgie, 1893. 46: p. 409-421.
2. Baksh, D., L. Song, and R.S. Tuan, "Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy". Journal of cellular and molecular medicine, 2004. 8(3): p. 301-316.
3. Robert, F., "Tissue engineers build new bone". Science, 2000. 289 (5484): p. 1498-1500.
4. Pittenger, M.F., A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, and D.R. Marshak, "Multilineage potential of adult human mesenchymal stem cells". Science, 1999. 284(5411): p. 143-147.
5. 幹細胞與組織工程教學資源中心, "幹細胞學"2008.
6. Grace, K.L.R., W.J. Revell, and M. Brookes, "The effects of pulsed electromagnetism on fresh fracture healing: osteochondral repair in the rat femoral groove". Orthopedics, 1998. 21(3): p. 297-302.
7. De Haas, W.G., J. Watson, and D.M. Morrison, "Non-invasive treatment of ununited fractures of the tibia using electrical stimulation". The Journal of bone and joint surgery. British volume, 1980. 62(4): p. 465.
8. Brighton, C.T., W.J. Hozack, M.D. Brager, R.E. Windsor, S.R. Pollack, E.J. Vreslovic, and J.E. Kotwick, "Fracture healing in the rabbit fibula when subjected to various capacitively coupled electrical fields". Journal of orthopaedic research, 1985. 3(3): p. 331-340.
9. McLeod, K.J. and C.T. Rubin, "The effect of low-frequency electrical fields on osteogenesis". The Journal of bone and joint surgery. American volume, 1992. 74(6): p. 920.
10. Fukada, E. and I. Yasuda, "On the piezoelectric effect of bone". J. Phys. Soc. Japan, 1957. 12(10): p. 1158-1162.
11. Friedenberg, Z.B. and C.T. Brighton, "Bioelectric potentials in bone". The Journal of Bone and Joint Surgery (American), 1966. 48(5): p. 915-923.
12. Mcleod, K.J., H.J. Donahue, P.E. Levin, M.A. Fontaine, and C.T. Rubin, "Electric fields modulate bone cell function in a density‐dependent manner". Journal of Bone and Mineral Research, 1993. 8(8): p. 977-984.
13. Kuan-Jung Li, J., J. Cheng-An Lin, H. Liu, J. Sun, R. Ruaan, C. Shih, and W. Hong-Shong Chang, "Comparison of ultrasound and electromagnetic field effects on osteoblast growth". Ultrasound in medicine & biology, 2006. 32(5): p. 769-775.
14. Titushkin, I., S. Sun, J. Shin, and M. Cho, "Physicochemical control of adult stem cell differentiation: shedding light on potential molecular mechanisms". 2010.
15. Gerard, M., A. Chaubey, and B.D. Malhotra, "Application of conducting polymers to biosensors". Biosensors and bioelectronics, 2002. 17(5): p. 345-359.
16. Guimard, N.K., N. Gomez, and C.E. Schmidt, "Conducting polymers in biomedical engineering". Progress in Polymer Science, 2007. 32(8): p. 876-921.
17. 林峰輝, "組織工程之生醫材料". 臺灣醫學, 2001. 5(6): p. 677-680.
18. 李宣書, "淺談組織工程". 物理雙月刊, 2001. 24(3): p. 430-435.
19. Robert, L. and P.V. Joseph, "Tissue engineering". Science, 1993. 260: p. 920-926.
20. Healy, K. and R. Guldberg, "Bone tissue engineering". JOURNAL OF MUSCULOSKELETAL AND NEURONAL INTERACTIONS, 2007. 7(4): p. 328.
21. 張至宏and 林峰輝, "源源不絕的骨骼銀行─ 談硬骨組織工程". 科學發展期刊, 2002. 356: p. 18-21.
22. Baksh, D., R. Yao, and R.S. Tuan, "Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow". Stem cells, 2007. 25(6): p. 1384-1392.
23. Chapman, A.R., M.S. Frankel, and M.S. Garfinkel. Stem cell research and applications: monitoring the frontiers of biomedical research. 1999. American Association for the Advancement of Science.
24. Potten, C.S. and M. Loeffler, "Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt". Development, 1990. 110(4): p. 1001-1020.
25. Holtzer, H., H. Weintraub, R. Mayne, and B. Mochan, "The cell cycle, cell lineages, and cell differentiation". Curr. Top. Dev. Biol, 1972. 7: p. 229-256.
26. Mundy, G.R., B. Boyce, D. Hughes, K. Wright, L. Bonewald, S. Dallas, S. Harris, N. Ghosh-Choudhury, D. Chen, C. Dunstan, E. Izbicka, and T. Yoneda, "The effect of cytokines and growth factor on osteoblastic cells". Elsevier Science Inc, 1995. 17(2): p. 71S-75S.
27. Stein, G.S., J.B. Lian, J.L. Stein, A.J. Van Wijnen, and M. Montecino, "Transcriptional control of osteoblast growth and differentiation". Physiological reviews, 1996. 76(2): p. 593-629.
28. Griffon, D.J., "Fracture healing". 2005.
29. Chiras, D.D., "Human biology"2005: Jones & Bartlett Learning.
30. Julius, W., "The law of transformation of the bone". 1892.
31. Robert, O., M.D. Becker, and S. Gary, "The body electric - electromagnetism and the foundation of life"1985.
32. 林峰輝, 白育綸, and 俞耀庭, "生物醫用材料"2004.
33. Burg, K.J.L., S. Porter, and J.F. Kellam, "Biomaterial developments for bone tissue engineering". Biomaterials, 2000. 21(23): p. 2347-2359.
34. 宋信文and 陳松青, "生醫材料簡介". 2003.
35. Chiang, C.K., C.R. Fincher Jr, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C.
Gau, and A.G. MacDiarmid, "Electrical conductivity in doped polyacetylene". Physical Review Letters, 1977. 39(17): p. 1098-1101.
36. Nathalie K. Guimard, N.G., Christine E. Schmidt, "Conducting polymers in biomedical engineering". Prog. Polym. Sci., 2007. 32: p. 876-921.
37. Bocchi, V., L. Chierici, G.P. Gardini, and R. Mondelli, "On pyrrole oxidation with hydrogen peroxide". Tetrahedron, 1970. 26(17): p. 4073-4082.
38. Gardint, G.P., "The oxidation of monocychc pyrroles". Heterocyclic Chemistry, 1973. 15: p. 67-98.
39. Tura, J.M., "On the structure and transport properties of polypyrroles". 1992: p. 335-351.
40. Street, G., T. Clarke, R. Geiss, V. Lee, A. Nazzal, P. Pfluger, and J. Scott, "Characterization of polypyrrole". 1983.
41. Diaz, A.F., J.I. Castillo, J.A. Logan, and W.Y. Lee, "Electrochemistry of conducting polypyrrole films". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981. 129(1-2): p. 115-132.
42. Asavapiriyanont, S., G.K. Chandler, G.A. Gunawardena, and D. Pletcher, "The electrodeposition of polypyrrole films from aqueous solutions". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984. 177(1-2): p. 229-244.
43. Sato, K., M. Yamaura, T. Hagiwara, K. Murata, and M. Tokumoto, "Study on the electrical conduction mechanism of polypyrrole films". Synthetic Metals, 1991. 40(1): p. 35-48.
44. Aleman, C., J. Casanovas, J. Torras, O. Bertran, E. Armelin, R. Oliver, and F. Estrany, "Cross-linking in polypyrrole and poly (< i> N >-methylpyrrole): Comparative experimental and theoretical studies". Polymer, 2008. 49(4): p. 1066-1075.
45. Atanasoska, L., K. Naoi, and W.H. Smyrl, "XPS studies on conducting polymers: polypyrrole films doped with perchlorate and polymeric anions". Chemistry of materials, 1992. 4(5): p. 988-994.
46. Chougulea, M.A., S.G. Pawara, P.R. Godsea, R.N. Mulika, S. Senb, and V.B. Patila, "Synthesis and characterization of polypyrrole (PPy) thin films". Soft Nanoscience Letters, 2011. 1(1): p. 6-10.
47. Onoda, M., Y. Abe, and K. Tada, "Experimental study of culture for mouse fibroblast used conductive polymer films". Thin Solid Films, 2010. 519(3): p. 1230-1234.
48. El-Said, W.A., C.H. Yea, J.W. Choi, and I.K. Kwon, "Ultrathin polyaniline film coated on an indium–tin oxide cell-based chip for study of anticancer effect". Thin Solid Films, 2009. 518(2): p. 661-667.
49. Wong, J.Y., R. Langer, and D.E. Ingber, "Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells". Proceedings of the National Academy of Sciences, 1994. 91(8): p. 3201.
50. Garner, B., A. Georgevich, A.J. Hodgson, L. Liu, and G.G. Wallace, "Polypyrrole–heparin composites as stimulus‐responsive substrates for endothelial cell growth". Journal of biomedical materials research, 1999. 44(2): p. 121-129.
51. Schmidt, C.E., V.R. Shastri, J.P. Vacanti, and R. Langer, "Stimulation of neurite outgrowth using an electrically conducting polymer". Proceedings of the National Academy of Sciences, 1997. 94(17): p. 8948.
52. Hodgson, A.J., M.J. John, T. Campbell, A. Georgevich, S. Woodhouse, T. Aoki, N. Ogata, and G.G. Wallace, "Integration of biocomponents with synthetic structures- Use of conducting polymer polyelectrolyte composites". Smart structures and materials 1996- Smart materials technologies and biomimetics, 1996: p. 164-176.
53. Wang, X., X. Gu, C. Yuan, S. Chen, P. Zhang, T. Zhang, J. Yao, F. Chen, and G. Chen, "Evaluation of biocompatibility of polypyrrole in vitro and in vivo". Journal of biomedical materials research. Part A, 2004. 68(3): p. 411.
54. Ateh, D.D., P. Vadgama, and H.A. Navsaria, "Culture of human keratinocytes on polypyrrole-based conducting polymers". Tissue engineering. Vol. 12. 2006. 645-655.
55. Castano, H., E.A. O’’Rear, P.S. McFetridge, and V.I. Sikavitsas, "Polypyrrole thin films formed by admicellar polymerization support the osteogenic differentiation of mesenchymal stem cells". Macromolecular bioscience, 2004. 4(8): p. 785-794.
56. Aoki, T., M. Tanino, K. Sanui, N. Ogata, K. Kumakura, T. Okano, Y. Sakurai, and M. Watanabe, "Culture of mammalian cells on polypyrrole-coated ITO as a biocompatible electrode". Synthetic Metals, 1995. 71(1-3): p. 2229-2230.
57. Wang, H., L. Ji, D. Li, and J.Y. Wang, "Characterization of nanostructure and cell compatibility of polyaniline films with different dopant acids". The Journal of Physical Chemistry B, 2008. 112(9): p. 2671-2677.
58. Langer, R.S. and N. Rahman, "Polypyrrole: an interactive substrate for bone regeneration", 1998, Massachusetts Institute of Technology.
59. Sanghvi, A.B., "Phage display technology for surface functionalization of a synthetic biomaterial", 2006, THE UNIVERSITY OF TEXAS AT AUSTIN.
60. Shi, G., Z. Zhang, and M. Rouabhia, "The regulation of cell functions electrically using biodegradable polypyrrole–polylactide conductors". Biomaterials, 2008. 29(28): p. 3792-3798.
61. Shi, G., M. Rouabhia, S. Meng, and Z. Zhang, "Electrical stimulation enhances viability of human cutaneous fibroblasts on conductive biodegradable substrates". Journal of Biomedical Materials Research Part A, 2008. 84(4): p. 1026-1037.
62. Shi, G., M. Rouabhia, Z. Wang, L.H. Dao, and Z. Zhang, "A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide". Biomaterials, 2004. 25(13): p. 2477-2488.
63. Sanghvi, A.B., K.P.H. Miller, A.M. Belcher, and C.E. Schmidt, "Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer".
Nature materials, 2005. 4(6): p. 496-502.
64. Shastri, V., I. Martin, R. Langer, and N. Rahman, "Electroactive materials for stimulation of biological activity of stem cells", 2003, Google Patents.
65. Kotwal, A. and C.E. Schmidt, "Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials". Biomaterials, 2001. 22(10): p. 1055-1064.
66. Sun, S., I. Titushkin, and M. Cho, "Regulation of mesenchymal stem cell adhesion and orientation in 3D collagen scaffold by electrical stimulus". Bioelectrochemistry, 2006. 69(2): p. 133-141.
67. Heo, C., J. Yoo, S. Lee, A. Jo, S. Jung, H. Yoo, Y.H. Lee, and M. Suh, "The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes". Biomaterials, 2011. 32(1): p. 19-27.
68. Moroder, P., M.B. Runge, H. Wang, T. Ruesink, L. Lu, R.J. Spinner, A.J. Windebank, and M.J. Yaszemski, "Material properties and electrical stimulation regimens of polycaprolactone fumarate–polypyrrole scaffolds as potential conductive nerve conduits". Acta Biomaterialia, 2011. 7(3): p. 944-953.
69. Rowlands, A.S. and J.J. Cooper-White, "Directing phenotype of vascular smooth muscle cells using electrically stimulated conducting polymer". Biomaterials, 2008. 29(34): p. 4510-4520.
70. Thompson, B.C., R.T. Richardson, S.E. Moulton, A.J. Evans, S. O’’Leary, G.M. Clark, and G.G. Wallace, "Conducting polymers, dual neurotrophins and pulsed electrical stimulation--Dramatic effects on neurite outgrowth". Journal of Controlled Release, 2010. 141(2): p. 161-167.
71. Mooney, E., F. Barry, V. Barron, M. Murphy, and C. Ireland, "Electrical Stimulation of Mesenchymal Stem Cells in the Presence of Carbon Nanotubes". 2010.
72. 柯以侃and 吳明珠, "儀器分析, 新文京開發"2003.
73. 賴英煌, 邱雯藝, and 洪偉修, "同步輻射X-ray 光電子能譜在表面化學之研究". CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) SEP, 2002. 60(3): p. 381-390.
74. Ikeda, K., T. Takayama, N. Suzuki, K. Shimada, K. Otsuka, and K. Ito, "Effects of low-intensity pulsed ultrasound on the differentiation of C2C12 cells". Life sciences, 2006. 79(20): p. 1936-1943.
75. Kharat, H.J., K.P. Kakde, P.A. Savale, K. Datta, P. Ghosh, and M.D. Shirsat, "Synthesis of polypyrrole films for the development of ammonia sensor". Polymers for Advanced Technologies, 2007. 18(5): p. 397-402.
76. Shaktawat, V., K. Sharma, and N. Saxena, "Structural and electrical characterization of protonic acid doped polypyrrole ". Journal of Ovonic Research Vol, 2010. 6(6): p. 239-245.
77. Horowitz, G., "Organic field-effect transistors". Advanced Materials, 1998. 10(5): p. 365-377.
76
78. Bidez, P.R., L. SHUXI, A.G. Macdiarmid, E.C. Venancio, Y. Wei, and P.I. Lelkes, "Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts". Journal of biomaterials science. Polymer edition, 2006. 17(1-2): p. 199-212.
79. Kim, D.H., S.M. Richardson‐Burns, J.L. Hendricks, C. Sequera, and D.C. Martin, "Effect of immobilized nerve growth factor on conductive polymers: electrical properties and cellular response". Advanced Functional Materials, 2007. 17(1): p. 79-86.
80. 黃彥錦, "探討細胞質內鈣離子誘導細胞死亡之過程:自噬作用所扮演的角色", in 成功大學生理學研究所學位論文2010, 成功大學.
81. Gomez, N. and C.E. Schmidt, "Nerve growth factor‐immobilized polypyrrole: Bioactive electrically conducting polymer for enhanced neurite extension". Journal of Biomedical Materials Research Part A, 2007. 81(1): p. 135-149.
82. Komori, T. and T. Kishimoto, "Cbfa1 in bone development". Current opinion in genetics & development, 1998. 8(4): p. 494-499.
指導教授 胡威文(Wei-wen Hu) 審核日期 2012-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明