參考文獻 |
[1] A. Goetzeger and C. Hebling, “Photovoltaic Materials, Past, Present, Future,” Sol. Energy Mater. Sol. Cells 62 (2000) 1-19.
[2] K. L. Chopra, P. D. Paulson and V. Dutta, “Thin-film Solar Cells: an Overview,” Progress in Photovoltaics 12 (2004) 69–92.
[3] M. A. Green, K. Emery, D. L. King, S. Igari, and W. Warta, “Solar Cell Efficiency Tables (version 39),”Progress in Photovoltaics:Research and Applications 20 (2012) 12-20.
[4] W. H. Southwell, “Pyramid-array Surface-relief Structures Producing Antireflection Index Matching on Optical Surfaces,” J. Opt. Soc. Am. A 8 (1991) 549.
[5] Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss and G. M. Whitesides, “Complex Optical Surfaces Formed by Replica Molding against Elastomeric Masters,” Science 273 (1996) 347-349.
[6] S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Imprint Lithography with 25-nanometer Resolution,” Science 272 (1996)85-87.
[7] Y. N. Xia and G. M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci. 28 (1998)153-184.
[8] D. M. Eigler, and E. K. Schweizer, “Positioning Single Atoms with a Scanning Tunneling Microscope,” Nature 344 (1990) 524-526.
[9] R. D. Piner, J. Zhu, F. Xu, S. Hong and C. A. Mirkin, “ "Dip-pen" Nanolithography,” Science 283 (1999) 661-663.
[10] D. Wouters and U. S. Schubert, “Nanolithography and Nanochemistry: Probe-related Patterning Techniques and Chemical Modification for Nanometer-sized Devices,” Angew. Chem. Int. Ed. 43 (2004) 2480-2495.
[11] G. M. Whitesides and P. E. Laibinis, “Wet Chemical Approaches to the Characterization of Organic-Surfaces—Self-assembled Monolayers, Wetting and the Physical Organic-chemistry of the Solid Liquid Interface,” Langmuir 6 (1990) 87-96.
[12] G. M. Whitesides, J. P. Mathias and C. T. Seto, “Molecular Self-assembly and Nanochemistry: a Chemical Strategy for the Synthesis of Nanostructures,” Science 254 (1991) 1312-1319.
[13] C. Acikgoz, M. A. Hempenius, J. Huskens and G. J. Vancso, “Polymers in Conventional and Alternative Lithography for the Fabrication of Nanostructures,” European Polymer 47 (2011) 2033-2052.
[14] M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis and H. A. Atwater, “Enhanced Absorption and Carrier Collection in Si Wire Arrays for Photovoltaic Applications,” Nat. Mater. 9 (2010) 239-244
[15] Y. Kanamoria, K. Hane, H. Sai and H. Yugami, “100 nm Period Silicon Antireflection Structures Fabricated Using a Porous Alumina Membrane Mask,” Appl. Phys. Lett. 78 (2001) 142-143.
[16] M. J. Huang, C. R. Yang and Y. C. Chiou, “Fabrication of Nanoporous Antireflection Surfaces on Silicon, ” Sol. Energy Mater. Sol. 92 (2008) 1352-1357.
[17] J. T. Li, W. Lei, X. B. Zhang, B. P. Wang and L. Ba, “Field Emission of Vertically-aligned Carbon Nanotube Arrays Grown on Porous Silicon Substrate,” Solid State Electron. 48 (2004) 2147-2151.
[18] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader and H. M. van Driel, “Large-scale Synthesis of a Silicon Photonic Crystal with a Complete Three-dimensional Bandgap near 1.5 Micrometres,” Nature 405 (2000) 437-440.
[19] Z. Y. Zhong, B. Gates, Y. N. Xia and D. Qin, “Soft Lithographic Approach to the Fabrication of Highly Ordered 2D Arrays of Magnetic Nanoparticles on the Surfaces of Silicon Substrates,” Langmuir 16 (2000) 10369-10375.
[20] J. T. Borenstein, H. Terai, K. R. King, E. J. Weinberg, M. R. Kaazempur-Mofrad and J. P. Vacanti, “Microfabrication Technology for Vascularized Tissue Engineering,” Biomed. Microdevices 4 (2002) 167-175.
[21] A. A. Tseng, K. Chen, C. D. Chen and K. J. Ma, “Electron Beam Lithography in Nanoscale Fabrication: Recent Development,” IEEE Trans. Electron. Packag. Manuf. 26 (2003) 141-149.
[22] J. F. Smyth, S. Schultz, D. Kern, H. Schmid and D. Yee, “Hysteresis of Submicron Permalloy Particulate Arrays,” J.Appl. Phys. 63 (1988) 4237-4239.
[23] P. B. Fischer and S. Y. Chou, “10 nm Electron Beam Lithography and Sub50 nm Overlay Using a Modified Scanning Electron Microscope,” Appl. Phys. Lett. 62 (1993) 2989-2991.
[24] S. M. Cherif, and J. F. Hennequin, “Submicron Structures in Thin Layers by Electron Beam Lithography and Ion Beam Sputtering,” J. Magn. Magn. Mater. 165 (1997) 504-507.
[25] J. I. Martın, Y. Jaccard, A. Hoffmann, J. Nogu!es, J. M. George, J. L. Vicent and I. K. Schuller, “Fabrication of Submicrometric Magnetic Structures by Electron-beam Lithography,” J. Appl. Phys. 84 (1998) 411-415.
[26] J. I. Martın, J. L. Vicent, J. V. Anguita and F. Briones, “Fabrication of Ordered Arrays of Permalloy Submicrometric Dots,” J. Magn. Magn. Mater. 203 (1999) 156-158.
[27] J. Wong, A. Scherer, M. Todorovic and S. Schultz, “Fabrication and Characterization of High Aspect Ratio Perpendicular Patterned Information Storage Media in an Al2O3/GaAs Substrate,” J. Appl. Phys. 85 (1999) 5489-5491.
[28] T. Taniyama, I. Nakatani, T. Namikawa and Y. Yamazaki, “Resistivity due to Domain Walls in Co Zigzag Wires,” Phys. Rev. Lett. 82 (1999) 2780-2783.
[29] R. P. Cowburn, “Property Variation with Shape in Magnetic Nanoelements,” J. Phys. D 33 (2000) R1-R16.
[30] K. Arshak, M. Mihov, A. Arshak, D. McDonagh, and D. Sutton, “Novel Dry-developed Focused Ion Beam Lithography Scheme for Nanostructure Applications,” Microelectron. Eng. 144 (2004) 73-74.
[31] Y. N. Xia, J. A. Rogers, K. E. Paul and G. M. Whitesides, “Unconventional Methods for Fabricating and Patterning Nanostructures,” Chem. Rev. 99 (1999) 1823-1848.
[32] S. R. J. Brueck, “Optical and Interferometric Lithography-Nanotechnology Enablers,” Proc. IEEE 93 (2005) 1704-1721.
[33] M. Totzeck, W. Ulrich, A. Gohnermeier and W. Kaiser, “Semiconductor Fabrication: Pushing Deep Ultraviolet Lithography to its Limits,” Nature Photon. 1 (2007) 629-631.
[34] G. M. Wallraff and W. D. Hinsberg,“Lithographic Imaging Techniques for the Formation of Nanoscopic Features,” Chem. Rev. 99 (1999) 1801-1821.
[35] H. I. Smith, M. L. Schattenberg, S. D. Hector, J. Ferrera, E. E. Moon, I. Y. Yang, M. Burkhardt, “X-ray Nanolithography: Extension to the Limits of the Lithographic Process,” Microelctron Engng 32 (1996) 143-158.
[36] F. Cerrina and C. Marrian, “A Path to Nanolithography,” MRS Bull 21 (1996) 56-62.
[37] M. Rolandi, C. F. Quate, and H. Dai, “A New Scanning Probe Lithography Scheme with a Novel Metal Resist,” Adv. Mater. 14 (2002) 191-194.
[38] T. Schaub, R. Wiesendanger and H. J. Güntherodt, “Comparative Study of Different Tip Materials for Surface Modification by the Scanning Tunneling Microscope,” Nanotechnology 3 (1996) 77-83.
[39] K. Bessho, Y. Iwasaki, and S. Hashimoto, “Fabricating Nanoscale Magnetic Mounds Using a Scanning Probe Microscope,” J. Appl. Phys. 79 (1996) 5057-5059.
[40] C. X. Guo and D. J. Thomson, “Material Transfer between Metallic Tips and Surface in the STM,” Ultramicroscopy 42 (1992) 1452-1458.
[41] S. Y. Chou, P. R. Kraus, W. Zhang, L. Guo and L. Zhuang, “Sub-10 nm Imprint Lithography and Applications,” J. Vac. Sci. Technol. B 15 (1997) 2897-2904.
[42] W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. Kong and S. Y. Chou, “Large Area High Density Quantized Magnetic Disks Fabricated Using Nanoimprint Lithography,” J. Vac. Sci. Technol. B 16 (1998) 3825-3829.
[43] S. P. Li, A. Lebib, D. Peyrade, M. Natali and Y. Chen, “Microplow-row Lithography and Fabrication of Submicrometer Magnetic Structures,” Appl. Phys. Lett. 77 (2000) 2743-2745.
[44] S. Palacin, P. C. Hidber, J. P. Bourgoin, C. Miramond, C. Ferman and G. M. Whitesides, “Patterning with Magnetic Materials at the Micron Scale,” Chem. Mater. 8 (1996) 1316-1325.
[45] K.R. Williams, K. Gupta and M. Wasilik, “Etch Rates for Micromachining Processing - Part II,” J. Microelectromechanical S. 12 (2003) 761-778.
[46] H. Jansen, H. Gardeniers, M. Boer, M. Elwenspoek, and J. Fluitman, “A survey on the reactive ion etching of silicon in microtechnology,” J. Micromech. Microeng. 6 (1996) 14-28.
[47] G. T. A. Kovacs, N. I. Maluf and K. E. Petersen, “Bulk Micromachining of Silicon,” Proc. IEEE 86 (1998) 1536-1551.
[48] J. I. Martin, J. Nogues, K. Liu, J. L. Vicent and I. K. Schuller, “Ordered Magnetic Nanostructures Fabrication and Properties,” J. Magn. Magn. Mater. 256 (2003) 449-501.
[49] Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer and U. Gösele, “Oxidation Rate Effect on the Direction of Metal-assisted Chemical and Electrochemical Etching of Silicon,” J. Phys. Chem. C 114 (2010) 10683-10690.
[50] V. Lehmann and H. Föll, “Formation Mechanism and Properties of Electrochemically Etched Trenches in n-Type Silicon,” J. Electrochem. Soc. 137 (1990) 653-659.
[51] P. Kleimann, J. Linnros, and R. Juhasz, “Formation of Three-dimensional Microstructures by Electrochemical Etching of Silicon,” Appl. Phys. Lett. 79 (2001) 1727-1729.
[52] P. Kleimann, X. Badel and J. Linnros, “Toward the Formation of Three-dimensional Nanostructures by Electrochemical Etching of Silicon,” Appl. Phys. Lett. 86 (2005) 183108.
[53] X. Li and P. W. Bohn, “Metal-assisted Chemical Etching in HF/H2O2 Produces Porous Silicon," Appl. Phys. Lett. 77 (2000) 2572-2574.
[54] K. Tsujino and M. Matsumura, “Helical Nanoholes Bored in Silicon by Wet Chemical Etching Using Platinum Nanoparticles as Catalyst,” Electrochem. Solid St. Lett. 8 (2005) C193-C195.
[55] Z. Huang, N. Geyer and P. Werner, “Metal-assisted Chemical Etching of Silicon: A Review,” Adv. Mater. 23 (2011) 285-308.
[56] A. F. Bogenschütz, W. Krusemark, K. H. Löcherer, and W. Mussinger, " Activation Energies in the Chemical Etching of Semiconductors in HNO3-HF-CH3COOH," J. Electrochem. Soc. 114 (1967) 970-973.
[57] P. Normand, K. Beltsios, A. Tserepi, K. Aidinis, D. Tsoukalas and C. Cardinaud, “A Masking Approach for Anisotropic Silicon Wet Etching,” Electrochem. Solid St. Lett. 4 (2001) G73-G76.
[58] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C. M. Lieber, “Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources,” Nature 449 (2007) 885-889.
[59] K. Q. Peng, X. Wang, L. Li, X. L. Wu and S. T. Lee, “High-performance Silicon Nanohole Solar Cells,” J. Am. Chem. Soc. 132 (2010) 6872-6873.
[60] V. Lehmann and U. Gosele, “Porous Silicon Formation: A Quantum Wire Effect,” Appl. Phys. Lett. 58 (1991) 856-858.
[61] V. Lehmann and U. Gösele, “Quantum Sponge Structures Grown via a Self-adjusting Etching Process,” Adv. Mater. 4 (1992) 114-116.
[62] V. Lehmann, “The Physics of Macropore Formation in Low Doped N-type Silicon,” Electrochem. Soc. 140 (1993) 2836-2843.
[63] K. Q. Peng, X. Wang, X. Wu, and S. T. Lee, “Fabrication and Photovoltaic Property of Ordered Macroporous Silicon,” Appl. Phys. Lett. 95 (2009) 143119.
[64] K. Peng, A. Lu, R. Zhang and S. T. Lee, “Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching,” Adv. Funct. Mater. 18 (2008) 3026-3035.
[65] C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, “Physical Properties of Thin Film Field Emission Cathodes with Molybdenum Cones,” J. Appl. Phys. 47 (1976) 5248-5263.
[66] K. Seeger and R. E. Palmer, “Fabrication of silicon cones and pillars using rough metal films as plasma etching masks,” Appl. Phys. Lett. 74 (1999) 1627-1629.
[67] Y. Chen, L. P. Guo and D. T. Shaw, “High-density silicon and silicon nitride cones,” J. Cryst. Growth 210 (2000) 527-531.
[68] D. H. Lowndes, J. D. Fowlkes and A. J. Pedraza, “Early stages of pulsed-laser growth of silicon microcolumns and microcones in air and SF6,” Appl. Surf. Sci. 154 (2000) 647-658.
[69] X. Y. Chen and Z. G. Liu, “Interaction between laser beam and target in pulsed laser deposition: laser fluence and ambient gas effects,” Appl. Phys. A 69 (1999) S523-S525.
[70] N. G. Shang, F. Y. Meng, F. C. K. Au, Q. Li, C. S. Lee, I. Bello and S. T. Lee, “Fabrication and field emission of high-density silicon cone arrays,” Adv. Mater. 14 (2002) 1308-1311.
[71] Y. Li, W. Cai and G. Duan, “Ordered Micro/Nanostructured Arrays Based on the Monolayer Colloidal Crystals,” Chem. Mater. 20 (2008) 615-624.
[72] Y. Li, N. Koshizakib and W. Cai, ” Periodic one-dimensional nanostructured arrays based on colloidal templates, applications and devices,” Coord. Chem. Rev. 255 (2011) 357-373.
[73] L. Li, T. Zhai, H. Zeng, X. Fang, Y. Bando and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem. 21 (2011) 40-56.
[74] S. Yang and Y. Lei, “Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications,” Nanoscale 3 (2011) 2768-2782.
[75] X. Z. Ye and L. M. Qi, ” Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications,” Nano Today 6 (2011) 608-631.
[76] H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41 (1982) 377-379.
[77] J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13 (1995) 1553-1558.
[78] C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105 (2001) 5599-5611.
[79] S. M. Yang, S. G. Jang, D. G. Choi, S. Kim and H. K. Yu, “Nanomachining by Colloidal Lithography,” Small 2 (2006) 458-475.
[80] J. Zhang, Y. Li, X. Zhang and B. Yang, “Colloidal Self-Assembly Meets Nanofabrication: From Two-Dimensional Colloidal Crystals to Nanostructure Arrays,” Adv. Mater. 22 (2010) 4249-4269.
[81] J. Perrin, “Mouvement brownien et réalité moléculaire,”Ann. chim. et d. phys. 18 (1909) 5-104.
[82] N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8 (1992) 3183-3190.
[83] A. S. Dimitrov and K. Nagayama, “Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces,” Langmuir 12 (1996) 1303-1311.
[84] P. Jiang and M. J. McFarland, “Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating,” J. Am. Chem. Soc. 126 (2004) 13778-13786.
[85] M. Trau, D. A. Saville and I. A. Aksay, “Field-induced layering of colloidal crystals,” Science 272 (1996) 706-709.
[86] M. Bardosova, M. E. Pemble, I. M. Povey and R. H. Tredgold, “The Langmuir-Blodgett Approach to Making Colloidal Photonic Crystals from Silica Spheres,” Adv. Mater. 22 (2010) 3104-3124.
[87] J. Pacifico, D. Gomez and P. Mulvaney, “A Simple Route to Tunable Two-Dimensional Arrays of Quantum Dots,” Adv. Mater. 17 (2005) 415-418.
[88] J. Chen, W. Liao, X. Chen, T. Yang, S. E. Wark, D. Son, J. D. Batteas and P. S. Cremer, “Evaporation-Induced Assembly of Quantum Dots into Nanorings,” ACS Nano 3 (2009) 173-180.
[89] C. M. Zhou and D. Gall, “Surface patterning by nanosphere lithography for layer growth with ordered pores,” Thin Solid Films 516 (2007) 433-437.
[90] C. H. Sun, N. C. Linn and P. Jiang, “Templated Fabrication of Periodic Metallic Nanopyramid Arrays,” Chem Mater 19 (2007) 4551-4556.
[91] P. X. Chen, Y. L. Fan, and Z. Y. Zhong, “The fabrication and application of patterned Si(001) substrates with ordered pits via nanosphere lithography,” Nanotechnology 20 (2009) 095303.
[92] H. Asoh, K. Uchibori and S. Ono, “Anisotropic chemical etching of silicon through anodic oxide films formed on silicon coated with microspheres,” Semiconductor Science and Tech. 26 (2011) 102001.
[93] W. K. Choi, J. L. Thong, Y. Bai, P. Newaskar and P. Luo, “Effect of etchant concentration and defects on pyramid formation in TMAH etched silicon,” Bull. Mater. Sci. 22 (1999) 615-620.
[94] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumartel, “Anisotropic etching of crystalline silicon in alkaline solutions, I: Orientation dependence and behavior of passivation layers,” J. Electrochem. Soc. 137 (1990) 3612-3626.
[95] M. E. Dudley and K. W. Kolasinski, “Wet etching of pillar-covered silicon surfaces: Formation of crystallographically defined macropores,” J. Electrochem. Soc. 155 (2008) H164-H171.
[96] M. A. Gosálvez, K. Sato, A. S. Foster, R. M. Nieminen, and H. Tanaka, “An atomistic introduction to anisotropic etching,” J. Micromech. Microeng. 17 (2007) S1-S26.
[97] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumartel, “Anisotropic etching of crystalline silicon in alkaline solutions, II: Influence of dopants,” J. Electrochem. Soc. 137 (1990) 3626-3632.
[98] K. E. Peterson, “Silicon as a mechanical material,” Proc IEEE 70 (1982) 420-457.
[99] K. E. Bean, “Anisotropic etching of silicon,” IEEE Trans. Electron Devices 25 (1978) 1185-1193.
[100] A. Vyatkin, V. Starkov, V. Tzeitlin, H. Presting, J. Konle and U. König, “Random and Ordered Macropore Formation in p-Type Silicon,” J. Electrochem. Soc. 149 (2002) G70-G76.
[101] H. Asoh, A. Oide and S. Ono, “Formation of microstructured silicon surfaces by electrochemical etching using colloidal crystal as mask,” Electrochem. Commun. 8 (2006) 1817-1820.
[102] L. Xu, W. Li, J. Xu, J. Zhou, L. C. Wu, X. G. Zhang, Z. Y. Ma and K. J. Chen, “Morphology control and electron field emission properties of high-ordered Si nanoarrays fabricated by modified nanosphere lithography,” Appl. Surf. Sci. 255 (2009) 5414-5417.
[103] H. B. Xu, N. Lu, D. P. Qi, L. G. Gao, J. Y. Hao, Y. D. Wang, and L. F. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng. 86 (2009) 850-852.
[104] X. M. Zhang, J. H. Zhang, Z. Y. Ren, X. Li, X. Zhang, D. F. Zhu, T. Q. Wang, T. Tian and B.Yang, “Morphology and Wettability Control of Silicon Cone Arrays Using Colloidal Lithography,” Langmuir 25 (2009) 7375-7382.
[105] J. W. Yang, J. I. Sim, H. M. An and T. G. Kim, “Fabrication of Nanometer-scale Pillar Structures by Using Nanosphere Lithography,” J. Korean Phys. Soc. 58 (2011) 994-997.
[106] H. Park, D. Shin, G. Kang, S. Baek, K. Kim and W. J. Padilla, “Broadband Optical Antireflection Enhancement by Integrating Antireflective Nanoislands with Silicon Nanoconical-Frustum Arrays,” Adv. Mater. 23 (2011) 5796-5800.
[107] H. L. Chen, S. Y. Chuang, C. H. Lin and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15 (2007) 14793-14803.
[108] C. M. Chan, T. M. Ko and H. Hiraoka, “Polymer surface modification by plasmas and photons,” Surf. Sci. Rep. 24 (1996) 3-56.
[109] J. L. Moruzzi, A. Kiermasz and W. Eccleston, “Plasma oxidation of silicon,” Plasma Phys. 24 (1982) 605-614.
[110] C. S. Lee, C. C. Chen, C. S. Hsu, S. Lee and R. K. Hsu, “Depth profiles and concentration percentages of SiO2 and SiOx induced by ion bombardment of a silicon (100) target,” J. Mater. Sci-Mater El. 19 (2008) 898-901.
[111] K. P. Han, C. Waldfried and S. Berry, “Study on silicon surface oxidation of post-implant resist cleaning,” Microelectron. Eng. 86 (2009) 155-159.
[112] I. Barycka and I. Zubel, “Silicon anisotropic etching in KOH-isopropanol etchant,” Sens. Actuators A48 (1995) 229-238.
|