博碩士論文 993208008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.145.84.183
姓名 游毓媛(Yu-Yuan Yu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 單/雙軸追日太陽光電系統電力性能:戶外實測與PVsyst模擬比較
(Electrical Performance of One/Two Axis Tracking PV System: Comparison between Outdoor Testing and Simulation with PVsyst)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 銅質均熱片研製★ 熱差式氣體流量計之感測模式及氣流道效應分析
★ 低溫倉儲噴流系統之實驗量測與數值模擬研究★ 壓縮微管流的熱流分析
★ 微小圓管的層流及熱傳數值模擬★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應
★ 微管道電滲流物理特性之數值模擬★ 電滲泵內多孔介質微流場特性之數值模擬
★ 被動式微混合器之數值模擬★ 電滲泵的製作與性能測試
★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討★ 無動件式高流率電滲泵的製作與特性分析
★ 不同型式光纖與集光器搭配之效率測試★ 微電滲泵之暫態熱流研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文探討中壢地區單/雙軸追日PV系統性能,由於雙軸PV系統實驗數據有限,故以PVsyst軟體模擬單/雙軸追日PV系統年度發電量,並將結果和實驗數據比較,驗證模擬可靠性。在雙軸追日控制上,比較中央大學團隊開發的短路電流追日與億芳光感測器之PV系統性能,最後藉由I-V特性曲線量測探討PV模組於戶外運作的實際性能。
雙軸追日PV系統部分,實驗組採用短路電流方法(安裝於tracker A),記錄的日均追日偏差角範圍為0.37o~0.68o,對照組採用光感測器的億芳控制器(安裝於完全相同型式的tracker B),得到的日均追日偏差角範圍為0.09o~0.2o,雖然短路電流的追日精度不如億芳光感測器,對PV系統而言,發電量才是決定系統性能的最終指標,兩者六天累積發電量分別為56.14 kWh及55.73 kWh;二者表現無分軒輊但是短度電流方法相較於光感測方法有不少優點(例如可補償追蹤器的機構變形、安裝及機構裝配造成的各種誤差),故它為實用有效的追日方法。單軸追日PV系統四年平均年發電量為835 kWh/kWP,2009年性能比為80.1%,2011年性能比降至59.5%,顯示PV系統有老化和機件故障的情形發生。
本文使用平均氣象年的概念模擬單/雙軸追日PV系統發電量,模擬雙軸PV系統tracker A和B和單軸PV系統的年發電量分別為1121、1128和1073 kWh/kWP/year, kWh/kWP/year,以本文的例子,雙軸相較於單軸年度發電量增益為5.17%。
量測I-V特性結果顯示日照量上升導致最大功率輸出增加,主要影響PV模組的短路電流;模組溫度上升會使最大功率輸出降低,主要影響PV模組的開路電壓。
摘要(英) This study presents performance of one/two-axis tracking photovoltaic (PV) system in Jhong-Li. Due to limited experimental data of two-axis PV system, simulation annual electricity of one/two-axis PV system with PVsyst software was used. Experimental data were compared and validated simulation reliability. In two axis sun-tracking control, comparison of the approach of short-circuit current tracking, developed by National Central University and active tracking sensor produced by EVERPHOTON Energy were made. Finally, evaluation of outdoor PV module performance by measure I-V characteristic of module was provided.
In two-axis tracking PV system, short-circuit current tracking control which installed on tracker A, has a daily average offset angle between 0.37o to 0.68o. Another identical Tracker B with controlled by EVERPHOTON Energy tracking sensor, recorded a daily average offset angle between 0.09o to 0.2o. Though the tracking accuracy of short-circuit current control is not better than EVERPHOTON Energy tracking sensor. As for assessing the performance of PV system, electricity is the ultimate factor. Accumulated electricity of six days for trackers A and B are 56.14 kWh and 55.73 kWh, respectively. Both tracking methods were performed equally, yet the short-circuit current control has several advantages (e.g., can compensate errors due to mechanism deformation, installation and assembly of tracker). Therefore, it is a practical and effective sun-tracking method. In the average yearly electricity for one axis tracking PV system is 835 kWh/kWP based on four year records. Its performance ratio in 2009 was 80.1%, and dropped to 59.5% in 2011, which shows degradation and mal-function of PV system.
This study uses average meteorological year data to simulate electricity of one/two-axis tracking PV system. The predicted electricity for both two-axis trackers A and B and one-axis PV system are 1121, 1128 and 1073 kWh/kWP/year, respectively. In this case, electricity gain for two-axis PV over one-axis PV system is 5.17%.
Results of I-V characteristic measurement show that the increase of solar irradiation causes increase of maximum power output and affects the short-circuit current of PV module. While the increase of module temperature causes decrease of maximum power output and affects open-circuit voltage of PV module.
關鍵字(中) ★ PVsyst
★ 單/雙軸追日PV性能實測
★ I-V特性曲線
★ 追日偏差
關鍵字(英) ★ Tracking offset angle
★ Performance of one/two axis tracking PV system
★ PVsyst
★ I-V characteristic
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 x
表目錄 xiii
符號說明 xv
第一章 緒論 1
1.1 前言 1
1.2 太陽光電技術 2
1.3 台灣太陽能發電現況 5
1.4 PV系統性能分析與模擬 9
1.5 研究動機 12
1.6 論文架構 12
第二章 實驗型PV系統 13
2.1 系統架構 13
2.2 PV模組 14
2.3 太陽追蹤器 16
2.4 追日控制系統 19
2.4.1 閉迴路控制系統 20
2.4.2 閉迴路控制系統 23
2.4.3 混合式控制系統 24
2.5 實驗數據結取設備 26
2.5.1 追日偏差角度量測設備 26
2.5.2 系統電力設備 27
2.5.3 微型氣象站 29
2.5.4 戶外型太陽能電池陣列檢測儀 31
第三章 太陽光電模擬分析 35
3.1 PVsyst軟體介紹 35
3.2 模擬架構參數設定 36
3.3 數學模型 41
3.3.1 轉換氣象資料為每小時 41
3.3.2 傾斜面日照量模型 41
3.3.3 PV輸出模型 42
第四章 中壢地區PV系統性能 45
4.1 PV系統性能分析參數 45
4.2 雙軸PV系統性能分析實驗與模擬數據比較 46
4.2.1 閉迴路控制實驗數據 46
4.2.2 混合式控制實驗數據 50
4.2.3 雙軸PV系統模擬結果 53
4.3 單軸PV系統性能實驗與模擬數據比較 61
4.3.1 單軸PV系統性能分析 61
4.3.2 單軸PV系統模擬結果 68
4.4 參數對模擬誤差的影響 72
4.4.1 氣象資料 72
4.4.2 追日偏差 75
4.4.3 傾斜面日照量模型 77
4.5 I-V特性曲線量測 79
第五章 結論與建議 85
5.1 結論 85
5.2 未來改進方向 86
參考文獻 87
參考文獻 Abu-Khader M. M., Badran O. O., Abdallah S., (2008) Evaluating multi-axes sun-tracking system at different modes of operation in Jordan, Renewable and Sustainable Energy Reviews 12: 864–873.
Aguiar R.J., Collares-Pereira M., Conde J. P. (1988) Simple procedure for generating sequences of daily radiation values using a library of Markov transition matrices. Solar Energy 40: 269-279.
Baltas P., Tortoreli M., Russell P. E. (1986) Evaluation of power output for fixed and step tracking photovoltaic arrays. Solar Energy 37(2): 147–63.
Chang, T.P. (2009) Output energy of a photovoltaic module mounted on a single-axis tracking system, Applied Energy, 86: 2071–2078.
Cucuno, M., Kaliakatsos, D., Marinelli, V. (1997) General calculation methods for solar trajectories, Renewable Energy 11: 223-234.
David, D. (2011) Nuclear power: look before you leap, SciDev.Net, September 28, 2011. http://www.scidev.net/en/climate-change-and-energy/nuclear-power-after-fukushima/editorials/nuclear-power-look-before-you-leap-1.html.
Duffie, J.A. and Beckman, W.A. (2006) Solar Engineering of Thermal Processes. 4th Ed, New York: John Wiley & Sons.
European Distributed Energy Resources Laboratories (2011) DERlab technical guidelines on long-term photovoltaic module outdoor tests, No. 100-01.
European Photovoltaic Industry Association (2011) Market report 2011.
Geoffrey, T.K., Joshua, S.S. (2009) Models used to assess the performance of photovoltaic systems, SAND 2009-8258.
Grena, R. (2008) An algorithm for the computation of the solar position, Solar Energy, 82: 462-470.
Hay, J. E. and Davies, J. A. (1980) Calculation of the Solar Radiation Incident on an Inclined Surface. In: Hay, J.E., Won, T.K. (Eds.), Proc. of First Canadian Solar Radiation Data Workshop.
Khalifa, A.N., Al-Mutawalli, S.S. (1998) Effect of two-axis sun tracking on the performance of compound parabolic concentrators, Energy Conversion Management, 39: 1073-1079.
Klucher T. M. (1979) Evaluation of models to predict insolation on tilted surfaces. Solar Energy 23(2): 111–4.
Koussa M., Cheknane A., Hadji S., Haddadi M., Noureddine S. (2011) Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and u nder a range of environmental conditions, Applied Energy 88 : 1756–1771.
Lee, C.Y., Chou, P.C., Chiang, C.M., Lin, C.F. (2009) Sun tracking systems: a review, Sensors, 9: 3875-3890.
Li Z,, Liu X., Tang R., (2010) Optical performance of inclined south-north single-axis tracked solar panels, Energy 35: 2511-2516.
Liu B. Y. H and Jordan R. C. (1963) The long-term average performance of flat-plate solar energy collectors, Solar Energy, 7(2): 53-74.
Luque-Heredia, I., Gordillo, F., Rodriguez, F.(2004) A PI based hybrid sun tracking algorithm for photovoltaic Concentration, 19th European Photovoltaic Solar Energy Conference.
Market report (2011) European Photovoltaic Industry Association.
McFee, R.H., (1975) Power collection reduction by mirror surface nonflatness and tracking error for a central receiver solar power system, Applied Optics, 14: 1493-1502.
Meyer, E.L., van Dyk, E.E. (2004) Assessing the reliability and degradation of photovoltaic module performance parameters, IEEE Transactions on Reliability, 53(1).
Mondol, J.D., Yohanis, Y.G., Norton, B. (2007) Comparison of measured and predicted long term performance of grid connected photovoltaic system. Energy Conversion and Management, 48: 1065-80.
Perez, R., Ineichen, P., Seals, R., Michalsky, J., Stewart, R. (1990) Modeling daylight availability and irradiance components from direct and global irradiance. Solar Energy 44 (5), 271–289
PVsyst (2010), user’s guide, University of Geneva.
Quesada, B., Sanchez, C., Canada, J., Royo, R., Paya, J. (2011) Experimental results and simulation with TRNSYS of a 7.2 kWp grid-connected photovoltaic system, Applied Energy, 88: 1772–1783.
Reda, I., Andreas, A. (2008) Solar position algorithm for solar radiation applications, NREL/TP-560-34302.
Reindl, D.T., Beckmann, W.A., Duffie, J.A. (1990a) Diffuse fraction correlations. Solar Energy 45 (1), 1–7.
Reindl, D.T., Beckmann, W.A., Duffie, J.A. (1990b) Evaluation of hourly tilted surface radiation models. Solar Energy 45 (1), 9–17.
Roth, P., Georgieg, A., Boudinov, H. (2004) Design and construction of a system for sun-tracking, Renewable Energy, 29, 393-402.
Semma, R.P., Imamura, M.S. (1980) Sun tracking controller for multi-kW photovoltaic concentrator system, 3rd International Photovoltaic Solar Energy Conference.
Thomas, H., Marcel, S., Ewan, D. D. (2008) Comparison of Potential Solar Electricity Output from Fixed-Inclined and Two-Axis Tracking Photovoltaic Modules in Europe, Prog. Photovolt: Res. Appl, 16: 47-59.
van Dyk, E.E., Gxasheka, A.R., Meyer, E.L. (2005) Monitoring current–voltage characteristics and energy output of silicon photovoltaic modules, Renewable Energy, 30: 399–411.
van Dyk, E.E., Meyer, E.L., Vorster F.J., Leitch A.W.R. (2002) Long-term monitoring of photovoltaic devices, Renewable Energy 25: 183–197.
Vivar M., Herrero R., Anton I., Martnez-Moreno F., Moreton R.,Sala G., Blakers A. W., Smeltink J. (2010) Effect of soiling in CPV systems, Solar Energy 84: 1327–1335.
林武君(2012)影像視覺追日偏差量測技術開發與太陽光電系統之實測,國立中央大學能源工程研究所碩士論文。
周建仁(2011),太陽能電池短路電流法追日控制器之研發,國立中央大學機械工程學系碩士論文。
林炯明(2010),都市熱島效應影響及其環境意涵,環境與生態學報,第3卷第1期:1-15。
陳麒峯(2010),追日偏差量測技術開發與聚光太光電系統之實測,國立中央大學能源工程研究所碩士論文。
經濟部能源局年報(2010),行政院經濟部能源局。
劉智維(2010),以指向誤差修正技術應用在追日精度改進,國立中央大學能源工程研究所碩士論文。
施華(2009),社區發展太陽能發電系統之成本效益評估,國立交通大學工學院產業安全與防災學程碩士論文。
「綠色能源產業旭升方案」行動計畫(2009),行政院經濟部。
陳雲蘭(2008),百年來台灣氣候的變化,科學發展,424期。
電子時報,2008年5月15日報導。
張智凱(2008),被動式雙軸太陽追蹤器之追控系統開發,國立中央大學能源工程研究所碩士論文。
歐文生,何明錦,陳瑞鈴,陳建富,羅時麒(2008),台灣太陽能設計用標準日射量之研究,建築學報,第64期,103~118頁。
何明錦、歐文生、陳建富(2006),台灣太陽能設計用標準日射量與相關檢測規範之研究,內政部建築研究所協同報告。
徐翠華(2002),台灣地區太陽輻射及太陽能發電潛力之研究,國立台灣師範大學地理研究所碩士論文。
林憲德和張思源(1987),建築空調耗能分析用平均氣象年資料之研究,國科會計畫編號NSC75-0410-E006-33,pp 3。
指導教授 吳俊諆(Jun-Chi Wu) 審核日期 2012-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明