參考文獻 |
參考文獻
1.Myung, Y., et al., Nonenzymatic Amperometric Glucose Sensing of Platinum, Copper Sulfide, and Tin Oxide Nanoparticle-Carbon Nanotube Hybrid Nanostructures. The Journal of Physical Chemistry C, 2009. 113(4): p. 1251-1259.
2.Chen, X.-m., et al., Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes. Biosensors and Bioelectronics, 2010. 25(7): p. 1803-1808.
3.Huang, K.-J., et al., Enhanced sensing of dopamine in the present of ascorbic acid based on graphene/poly(p-aminobenzoic acid) composite film. Colloids and Surfaces B: Biointerfaces, 2011. 88(1): p. 310-314.
4.Bao, Y., et al., Graphene Oxide-Templated Polyaniline Microsheets toward Simultaneous Electrochemical Determination of AA/DA/UA. Electroanalysis, 2011. 23(4): p. 878-884.
5.Mallesha, M., et al., Functionalized-graphene modified graphite electrode for the selective determination of dopamine in presence of uric acid and ascorbic acid. Bioelectrochemistry, 2011. 81(2): p. 104-108.
6.Meng, L., et al., Nonenzymatic Electrochemical Detection of Glucose Based on Palladium−Single-Walled Carbon Nanotube Hybrid Nanostructures. Analytical Chemistry, 2009. 81(17): p. 7271-7280.
7.Chen, Y.S. and J.H. Huang, Arrayed CNT-Ni nanocomposites grown directly on Si substrate for amperometric detection of ethanol. Biosens Bioelectron, 2010. 26(1): p. 207-12.
8.McCreery, R.L., Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chemical Reviews, 2008. 108(7): p. 2646-2687.
9. Allen, M.J., V.C. Tung, and R.B. Kaner, Honeycomb Carbon: A Review of Graphene. Chemical Reviews, 2009. 110(1): p. 132-145.
10.Hernandez, Y., et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nano, 2008. 3(9): p. 563-568.
11.Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-9.
12.Geim, A.K. and K.S. Novoselov, The rise of graphene. Nat Mater, 2007. 6(3): p. 183-191.
13. Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339.
14.He, Q., et al., Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films: Fabrication and Sensing Applications. ACS Nano, 2010. 4(6): p. 3201-3208.
15.Zhu, Y., et al., Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater, 2010. 22(35): p. 3906-24.
16.Loh, K.P., et al., Graphene oxide as a chemically tunable platform for optical applications. Nat Chem, 2010. 2(12): p. 1015-1024.
17.Wang, Y., et al., Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing. ACS Nano, 2010. 4(4): p. 1790-1798.
18.Chen, D., L. Tang, and J. Li, Graphene-based materials in electrochemistry. Chem Soc Rev, 2010. 39(8): p. 3157-80.
19. Zhou, M., Y. Zhai, and S. Dong, Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide. Analytical Chemistry, 2009. 81(14): p. 5603-5613.
20.Shang, N.G., et al., Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes. Advanced Functional Materials, 2008. 18(21): p. 3506-3514.
21.Kachoosangi, R.T. and R.G. Compton, A simple electroanalytical methodology for the simultaneous determination of dopamine, serotonin and ascorbic acid using an unmodified edge plane pyrolytic graphite electrode. Anal Bioanal Chem, 2007. 387(8): p. 2793-800.
22.Zhu, H.W., et al., Direct synthesis of long single-walled carbon nanotube strands. Science, 2002. 296(5569): p. 884-6.
23.Balasubramanian, K. and M. Burghard, Chemically functionalized carbon nanotubes. Small, 2005. 1(2): p. 180-92.
24.Avouris, P., M. Freitag, and V. Perebeinos, Carbon-nanotube photonics and optoelectronics. Nat Photon, 2008. 2(6): p. 341-350.
25. Qian, H., et al., Hierarchical Composites Reinforced with Carbon Nanotube Grafted Fibers: The Potential Assessed at the Single Fiber Level. Chemistry of Materials, 2008. 20(5): p. 1862-1869.
26.Chaudhary, S., et al., Hierarchical Placement and Associated Optoelectronic Impact of Carbon Nanotubes in Polymer-Fullerene Solar Cells. Nano Letters, 2007. 7(7): p. 1973-1979.
27.Chen, X.M., et al., A novel non-enzymatic ECL sensor for glucose using palladium nanoparticles supported on functional carbon nanotubes. Biosens Bioelectron, 2009. 24(12): p. 3475-80.
28.Dai, L., et al., Aligned nanotubes. Chemphyschem, 2003. 4(11): p. 1150-69.
29.Wei, B.Q., et al., Microfabrication technology: Organized assembly of carbon nanotubes. Nature, 2002. 416(6880): p. 495-496.
30.Qu, L., F. Du, and L. Dai, Preferential Syntheses of Semiconducting Vertically Aligned Single-Walled Carbon Nanotubes for Direct Use in FETs. Nano Letters, 2008. 8(9): p. 2682-2687.
31.Campbell, J.K., L. Sun, and R.M. Crooks, Electrochemistry Using Single Carbon Nanotubes. Journal of the American Chemical Society, 1999. 121(15): p. 3779-3780.
32.Dumitrescu, I., et al., Ultrathin Carbon Nanotube Mat Electrodes for Enhanced Amperometric Detection. Advanced Materials, 2009. 21(30): p. 3105-3109.
33.Pumera, M., Carbon Nanotubes Contain Residual Metal Catalyst Nanoparticles even after Washing with Nitric Acid at Elevated Temperature Because These Metal Nanoparticles Are Sheathed by Several Graphene Sheets. Langmuir, 2007. 23(11): p. 6453-6458.
34. Fukushima, T., et al., Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science, 2003. 300(5628): p. 2072-4.
35.Sudhakara Prasad, K., G. Muthuraman, and J.-M. Zen, The role of oxygen functionalities and edge plane sites on screen-printed carbon electrodes for simultaneous determination of dopamine, uric acid and ascorbic acid. Electrochemistry Communications, 2008. 10(4): p. 559-563.
36.Li, D., et al., Processable aqueous dispersions of graphene nanosheets. Nat Nano, 2008. 3(2): p. 101-105.
37.Ambrosi, A. and M. Pumera, Stacked graphene nanofibers for electrochemical oxidation of DNA bases. Phys Chem Chem Phys, 2010. 12(31): p. 8943-7.
38.Alwarappan, S., et al., Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications. The Journal of Physical Chemistry C, 2009. 113(20): p. 8853-8857.
39.Wang, Y., et al., Application of graphene-modified electrode for selective detection of dopamine. Electrochemistry Communications, 2009. 11(4): p. 889-892.
40.Wang, J., et al., Comparative studies on electrochemical activity of graphene nanosheets and carbon nanotubes. Electrochemistry Communications, 2009. 11(10): p. 1892-1895.
41.Welch, C. and R. Compton, The use of nanoparticles in electroanalysis: a review. Analytical and Bioanalytical Chemistry, 2006. 384(3): p. 601-619.
42.Hrapovic, S., et al., Metallic Nanoparticle−Carbon Nanotube Composites for Electrochemical Determination of Explosive Nitroaromatic Compounds. Analytical Chemistry, 2006. 78(15): p. 5504-5512.
43.Yang, M., et al., Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens Bioelectron, 2006. 21(7): p. 1125-31.
44.Wang, Z., et al., The synthesis of ionic-liquid-functionalized multiwalled carbon nanotubes decorated with highly dispersed Au nanoparticles and their use in oxygen reduction by electrocatalysis. Carbon, 2008. 46(13): p. 1687-1692.
45.Yang, S., et al., Pd nanoparticles supported on functionalized multi-walled carbon nanotubes (MWCNTs) and electrooxidation for formic acid. Journal of Power Sources, 2008. 175(1): p. 26-32.
46.Dhar, S., et al., Targeted Single-Wall Carbon Nanotube-Mediated Pt(IV) Prodrug Delivery Using Folate as a Homing Device. Journal of the American Chemical Society, 2008. 130(34): p. 11467-11476.
47.Yang, G.-W., et al., Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Carbon, 2008. 46(5): p. 747-752.
48.Chen, C., et al., Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). J Hazard Mater, 2009. 164(2-3): p. 923-8.
49.Yoo, E., et al., Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface. Nano Letters, 2009. 9(6): p. 2255-2259.
50.Chen, X., et al., Synthesis of “Clean” and Well-Dispersive Pd Nanoparticles with Excellent Electrocatalytic Property on Graphene Oxide. Journal of the American Chemical Society, 2011. 133(11): p. 3693-3695.
51.Li, F., et al., The synthesis of perylene-coated graphene sheets decorated with Au nanoparticles and its electrocatalysis toward oxygen reduction. Journal of Materials Chemistry, 2009. 19(23): p. 4022.
52.Huang, Z., et al., Preparation of well-dispersed PdAu bimetallic nanoparticles on reduced graphene oxide sheets with excellent electrochemical activity for ethanol oxidation in alkaline media. Journal of Materials Chemistry, 2012. 22(5): p. 1781.
53. Leitner, W., Green chemistry: Designed to dissolve. Nature, 2000. 405(6783): p. 129-130.
54.Leitner, W., Supercritical Carbon Dioxide as a Green Reaction Medium for Catalysis. Accounts of Chemical Research, 2002. 35(9): p. 746-756.
55.DeSimone, J.M., Practical approaches to green solvents. Science, 2002. 297(5582): p. 799-803.
56.Bayrakceken, A., et al., Pt-based electrocatalysts for polymer electrolyte membrane fuel cells prepared by supercritical deposition technique. Journal of Power Sources, 2008. 179(2): p. 532-540.
57.Marre, S., F. Cansell, and C. Aymonier, Design at the nanometre scale of multifunctional materials using supercritical fluid chemical deposition. Nanotechnology, 2006. 17(18): p. 4594-9.
58.Ye, X.R., Y. Lin, and C.M. Wai, Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide. Chemical Communications, 2003(5): p. 642-643.
59. Sun, Z., et al., Decoration carbon nanotubes with Pd and Ru nanocrystals via an inorganic reaction route in supercritical carbon dioxide-methanol solution. J Colloid Interface Sci, 2006. 304(2): p. 323-8.
60.Cangul, B., et al., Preparation of carbon black supported Pd, Pt and Pd–Pt nanoparticles using supercritical CO2 deposition. The Journal of Supercritical Fluids, 2009. 50(1): p. 82-90.
61.Lin, Y., X. Cui, and X. Ye, Electrocatalytic reactivity for oxygen reduction of palladium-modified carbon nanotubes synthesized in supercritical fluid. Electrochemistry Communications, 2005. 7(3): p. 267-274.
62.Liu, X., et al., Reactive Deposition of Palladium Nanoparticles onto Zeolite Membranes in Supercritical CO2. Industrial & Engineering Chemistry Research, 2010. 49(18): p. 8826-8831.
63.Shiddiky, M.J. and A.A. Torriero, Application of ionic liquids in electrochemical sensing systems. Biosens Bioelectron, 2011. 26(5): p. 1775-87.
64.Gale, R.J., B. Gilbert, and R.A. Osteryoung, Raman spectra of molten aluminum chloride: 1-butylpyridinium chloride systems at ambient temperatures. Inorganic Chemistry, 1978. 17(10): p. 2728-2729.
65.Wei, D. and A. Ivaska, Applications of ionic liquids in electrochemical sensors. Anal Chim Acta, 2008. 607(2): p. 126-35.
66.Anastas, P.T. and J.B. Zimmerman, Peer Reviewed: Design Through the 12 Principles of Green Engineering. Environmental Science & Technology, 2003. 37(5): p. 94A-101A.
67.Shan, C., et al., Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene. Biosens Bioelectron, 2010. 25(6): p. 1504-8.
68.Zhang, Q., et al., Fabrication of polymeric ionic liquid/graphene nanocomposite for glucose oxidase immobilization and direct electrochemistry. Biosens Bioelectron, 2011. 26(5): p. 2632-7.
69.Liu, Y., X. Zou, and S. Dong, Electrochemical characteristics of facile prepared carbon nanotubes–ionic liquid gel modified microelectrode and application in bioelectrochemistry. Electrochemistry Communications, 2006. 8(9): p. 1429-1434.
70.Lu, X., et al., Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid. Electrochemistry Communications, 2006. 8(5): p. 874-878.
71.Laszlo, J.A. and D.L. Compton, Comparison of peroxidase activities of hemin, cytochrome c and microperoxidase-11 in molecular solvents and imidazolium-based ionic liquids. Journal of Molecular Catalysis B: Enzymatic, 2002. 18(1–3): p. 109-120.
72.Persson, M. and U.T. Bornscheuer, Increased stability of an esterase from Bacillus stearothermophilus in ionic liquids as compared to organic solvents. Journal of Molecular Catalysis B: Enzymatic, 2003. 22(1–2): p. 21-27.
73.Liu, Y., et al., Highly active horseradish peroxidase immobilized in 1-butyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquid based sol-gel host materials. Chem Commun (Camb), 2005(13): p. 1778-80.
74.Safavi, A., et al., Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode. Analytical Biochemistry, 2006. 359(2): p. 224-9.
75.Maleki, N., A. Safavi, and F. Tajabadi, High-Performance Carbon Composite Electrode Based on an Ionic Liquid as a Binder. Analytical Chemistry, 2006. 78(11): p. 3820-3826.
76.Wang, Z., et al., Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. Analyst, 2002. 127(5): p. 653-658.
77.Wu, K., J. Fei, and S. Hu, Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. Analytical Biochemistry, 2003. 318(1): p. 100-106.
78.Zhang, M., et al., Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid. Biosensors and Bioelectronics, 2005. 20(7): p. 1270-1276.
79.Liu, H., Y. Liu, and J. Li, Ionic liquids in surface electrochemistry. Phys Chem Chem Phys, 2010. 12(8): p. 1685-97.
80.Yang, Y.-C., et al., Amplified immunosensing based on ionic liquid-doped chitosan film as a matrix and Au nanoparticle decorated graphene nanosheets as labels. Electrochimica Acta, 2011. 56(17): p. 6021-6025.
81.Sun, W., et al., Application of chitosan/Fe3O4 microsphere-graphene composite modified carbon ionic liquid electrode for the electrochemical detection of the PCR product of soybean Lectin gene sequence. Talanta, 2011. 87: p. 106-12.
82.Qiu, Y., et al., Electrochemical detection of DNA damage induced by acrylamide and its metabolite at the graphene-ionic liquid-Nafion modified pyrolytic graphite electrode. J Hazard Mater, 2011. 190(1-3): p. 480-5.
83.Xiao, F., et al., Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M=Ru, Pd and Au) nanoparticles on carbon nanotubes–ionic liquid composite film. Biosensors and Bioelectronics, 2009. 24(12): p. 3481-3486.
84.Yan, Q., et al., Voltammetric Determination of Uric Acid with a Glassy Carbon Electrode Coated by Paste of Multiwalled Carbon Nanotubes and Ionic Liquid. Electroanalysis, 2006. 18(11): p. 1075-1080.
85.Zhu, H., et al., Nonenzymatic glucose voltammetric sensor based on gold nanoparticles/carbon nanotubes/ionic liquid nanocomposite. Talanta, 2009. 79(5): p. 1446-1453.
86.Zhao, Y., et al., Structural and characteristic analysis of carbon nanotubes-ionic liquid gel biosensor. Electrochemistry Communications, 2007. 9(10): p. 2457-2462.
87.Zhao, F., et al., Electrochemical and Bioelectrochemistry Properties of Room-Temperature Ionic Liquids and Carbon Composite Materials. Analytical Chemistry, 2004. 76(17): p. 4960-4967.
88.Safavi, A., N. Maleki, and E. Farjami, Fabrication of a glucose sensor based on a novel nanocomposite electrode. Biosensors and Bioelectronics, 2009. 24(6): p. 1655-1660.
89.Safavi, A., et al., High electrocatalytic effect of palladium nanoparticle arrays electrodeposited on carbon ionic liquid electrode. Electrochemistry Communications, 2007. 9(8): p. 1963-1968.
90.Du, M., et al., Ionic liquid-functionalized graphene as modifier for electrochemical and electrocatalytic improvement: comparison of different carbon electrodes. Anal Chim Acta, 2011. 690(2): p. 169-74.
91. Li, F., et al., Synthesis of Pt/ionic liquid/graphene nanocomposite and its simultaneous determination of ascorbic acid and dopamine. Talanta, 2010. 81(3): p. 1063-8.
92.Ho Yang, M., et al., Directed Self-Assembly of Gold Nanoparticles on Graphene-Ionic Liquid Hybrid for Enhancing Electrocatalytic Activity. Electroanalysis, 2011. 23(4): p. 850-857.
93.Li, Y., et al., Selective and sensitive detection of dopamine in the presence of ascorbic acid by molecular sieve/ionic liquids composite electrode. Electrochimica Acta, 2011. 56(6): p. 2730-2734.
94.Sun, W., et al., Electrochemical Determination of Ascorbic Acid in Room Temperature Ionic Liquid BPPF6 Modified Carbon Paste Electrode. Electroanalysis, 2007. 19(15): p. 1597-1602.
95.Sun, W., M. Yang, and K. Jiao, Electrocatalytic oxidation of dopamine at an ionic liquid modified carbon paste electrode and its analytical application. Anal Bioanal Chem, 2007. 389(4): p. 1283-91.
96.Pandurangachar, M., et al., Electrochemical deposition of 1-butyl-4-methyl-pyridinium tetrafluroborate ionic liquid on carbon paste electrode and its application for the simultaneous determination of dopamine, ascorbic acid and uric acid. Journal of Molecular Liquids, 2011. 158(1): p. 13-17.
97.Zhao, Y., et al., Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta, 2005. 66(1): p. 51-7.
98.Kachoosangi, R.T., et al., Carbon nanotube-ionic liquid composite sensors and biosensors. Anal Chem, 2009. 81(1): p. 435-42.
99.Huang, K.-J., et al., An electrochemical amperometric immunobiosensor for label-free detection of α-fetoprotein based on amine-functionalized graphene and gold nanoparticles modified carbon ionic liquid electrode. Journal of Electroanalytical Chemistry, 2011. 656(1-2): p. 72-77.
100.Liu, Z., et al., High sensitive simultaneous determination of hydroquinone and catechol based on graphene/BMIMPF6 nanocomposite modified electrode. Sensors and Actuators B: Chemical, 2011. 157(2): p. 540-546.
101.Chai, J., et al., Hollow flower-like AuPd alloy nanoparticles: One step synthesis, self-assembly on ionic liquid-functionalized graphene, and electrooxidation of formic acid. Journal of Materials Chemistry, 2011. 21(44): p. 17922.
102.Maleki, N., A. Safavi, and F. Tajabadi, Investigation of the Role of Ionic Liquids in Imparting Electrocatalytic Behavior to Carbon Paste Electrode. Electroanalysis, 2007. 19(21): p. 2247-2250.
103.Zhang, Q., et al., Fabrication of polymeric ionic liquid/graphene nanocomposite for glucose oxidase immobilization and direct electrochemistry. Biosens Bioelectron, 2011. 26(5): p. 2632-7.
104.Yang, M.H., et al., Development of a Glucose Biosensor Using Advanced Electrode Modified by Nanohybrid Composing Chemically Modified Graphene and Ionic Liquid. Electroanalysis, 2010. 22(11): p. 1223-1228.
|