博碩士論文 993209002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.143.23.38
姓名 王覺漢(Chueh-Han Wang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 石墨烯/奈米鈀/離子液體複合電極之電化學感測性質研究
(Electrochemical Sensing Performance of Graphene/Palladium/Ionic liquid Nanocompositie Electrodes)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 陽極沉積釩氧化物於離子液體中之擬電容行為
★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 離子液體電解質應用於石墨烯超級電容之特性分析★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極
★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極★ 電解質添加劑對鋅二次電池陽極電化學性質的影響
★ 電化學法所製備石墨烯及其硼摻雜改質之 超級電容特性分析★ 氫化二氧化鈦作為鋰、鈉、鎂鋰雙離子電池電極活性材料之電化學性質研究
★ 活性碳之粒徑與表面官能基以及所搭配的電解質配方對超高電容特性之影響★ 超臨界CO2合成SnO2、CoCO3與石墨烯複合材之儲鋰特性及陽極沉積層狀V2O5之儲鈉特性研究
★ 高濃度電解質於鋰電池知應用研究★ 熱解法製備硬碳材料應用於鈉離子電池負極
★ 活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響★ 離子液體電解質於鈉離子電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以石墨烯 (graphene)及多壁奈米碳管兩種奈米級碳材作為電化學感測的基材,感測物為抗壞血酸 (Ascorbic Acid)、多巴胺 (Dopamine)及尿酸 (Uric Acid),為了增加感測的靈敏度及選擇性,利用超臨界流體技術,將鈀奈米顆粒均勻負載於碳材上,增加反應表面積,以單純碳材或將鈀奈米顆粒負載於碳材上的複合材料作為感測電極時,多壁奈米碳管的催化性質皆優於石墨烯;除了奈米顆粒外,另用也使用離子液體作為輔助,本實驗中使用六種離子液體1-ethyl-3-methylimidazolium thiocyanate (EMI-SCN)、1-butyl-1-methylpyrrolidinium bis(trifluoromethyl) sulfonyl imide (BMP-NTf2)、1-butyl-1-methylpyrrolidinium dicyanamide (BMP-DCA)、1-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF6 )、1-ethyl-3-methylimidazolium bis(trifluoromethyl)sulfonyl imide (EMI-NTf2)及1-ethyl-3-methylimidazolium dicyanamide (EMI-DCA)和碳材相混合,在離子液體輔助之下,電化學訊號獲得良好改善,且遠優於利用鈀奈米顆粒作為輔助,而碳材的優劣也呈現相反的行為,改以石墨烯優於多壁奈米碳管,為了進一步提升感測電極的靈敏度及選擇性,將碳材、鈀奈米顆粒及離子液體三者相結合,其結果卻未比單純碳材混合離子液體來的佳,此外,根據研究結果顯示,當利用離子液體作為輔助時,陰離子主導了電化學感測行為,依據增益效果排序為SCN- > DCA- > PF6- > NTF2-。
本研究中同時也以石墨烯為基材偵測葡萄糖,單純石墨烯並無法偵測葡萄糖,因此同樣以鈀奈米顆粒及離子液體作為輔助的材料,根據實驗結果,添加了鈀奈米顆粒後,可成功的偵測到葡萄糖,而僅有石墨烯及離子液體時則無法偵測到葡萄萄,但若將石墨烯、鈀奈米顆粒及離子液體三者相結合時則具加乘的效果,和偵測抗壞血酸、多巴胺及尿酸時呈現相反的結論,主要的原因為感測機制不同所造成,而離子液體的行為雖仍以陰離子主導,但增益的效果卻呈現相反的行為,依序為NTF2- > PF6- > DCA- > SCN-。
由實驗結果得知,對於不同的待測物可藉由石墨烯、鈀奈米顆粒及離子液體間的互相搭配,而達到最佳的偵測效果,顯示這三種材料運用於電化學感測器上的可行性。
摘要(英) In this study, we use graphen-based and multiwall carbon nanotubes-based(MWCNT) materials as electrochemical sensing electrode to detect ascorbic acid(AA), dopamine (DA) and uric acid (UA). In order to enhance sensitivity and selective, nano-sized Pd catalyst particles are uniformly dispersed on both the carbon supports using a supercritical fluid deposition techniquein in which the MWCNT/Pd electrode shows higher detection current than that of the Graphene/Pd electrode. Besides Pd NPs, IL also utilized for application, the detection sensitivity of the Graphene/IL electrode is significantly promoted and noticeably outperforms that of the MWCNT/IL. Six different ILs are investigated in this research, including 1-ethyl-3-methylimidazolium thiocyanate (EMI-SCN), 1-butyl-1-methylpyrrolidinium bis (trifluoromethyl) sulfonyl imide (BMP-NTf2), 1-butyl-1-methylpyrroli dinium dicyanamide (BMP-DCA), 1-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF6 ), 1-ethyl-3-methylimidazolium bis(trifluoromethyl)sulfonyl imide (EMI-NTf2) and 1-ethyl-3-methylimidazolium dicyanamide (EMI-DCA). Both Pd NPs and IL could improve sensing performance, nevertheless, mixture of Graphene/Pd/IL electrode is not as good as graphene/IL electrode. The experimental result elucidated the cation dominate the sensing behavior as SCN- > DCA- > PF6- > NTF2-.
In the case of glucose, graphene cannot detect glucose in spite of IL existence, while Pd NPs supports act as catalyst can enhance performance. Especially Graphene/Pd/IL combination could improve sensing performance, the sensing behavior that also effected by cation, there are NTF2- > PF6- > DCA- > SCN-.
For simultaneous detection different analyte, the satisfactory selectivity and sensitivity can obtain by choosing suitable NPs or ILs that performs great potential in electrochemical sensing.
關鍵字(中) ★ 石墨烯
★ 離子液體
★ 鈀
關鍵字(英) ★ palladium
★ ionic liquid
★ graphene
論文目次 總目錄
摘要............................i
Abstract.......................iii
誌謝............................v
總目錄...........................vi
表目錄..........................ix
圖目錄..........................x
一.前言.........................1
二.研究背景與文獻回顧......................3
2-1電化學感測器...........................3
2-2碳材料................................5
2-2.1 石墨烯.............................5
2-2-2奈米碳管.............................8
2-3石墨烯與奈米碳管在電化學感測上的應用........9
2-4奈米顆粒在電化學感測上的應用.............11
2-5超臨界二氧化碳製備奈米顆粒...............13
2-6離子液體簡介...........................15
2-7離子液體於電化學感測的應用................16
2-8同步輻射角度解析XPS.....................19
三.實驗方法與步驟..........................40
3-1碳材料製備.............................40
3-1-1石墨烯..............................40
3-1-2 奈米碳管............................40
3-2製備奈米複合材料........................41
3-3奈米複合材料之特性鑑定...................41
3-3-1鈀奈米粒子承載量之分析.................41
3-3-2奈米複合材料結晶特性之鑑定..............42
3-3-3微結構之分析..........................42
3-4電化學感測流程...........................43
3-4-1 漿料(paste)與感測電極之製備............43
3-4-2離子液體輔助偵測.......................43
3-4-3電化學感測............................44
3-5同步輻射角度解析XPS試片製備................45
四.結果與討論...............................49
4-1材料分析................................49
4-1-1熱重分析法.............................49
4-1-2粉末X光繞射分析.........................49
4-1-3穿透式電子顯微鏡.........................50
4-2奈米碳管及石墨烯於電化學感測.................51
4-3 奈米碳管/鈀於電化學感測....................52
4-4石墨烯/鈀於電化學感測.......................52
4-5奈米碳管/離子液體的電化學感測特性.............53
4-6石墨烯/離子液體的電化學感測特性...............53
4-7石墨烯輔以不同離子液體於電化學感測.............54
4-8石墨烯/鈀輔以不同離子液體於電化學感測...........56
4-9計時安培法偵測多巴胺..........................57
4-10共同偵測..................................58
4-11不同種方法混和石墨烯及離子液體於電化學感測.......59
4-12石墨烯/鈀/離子液體於電化學感測葡萄糖............60
4-13同步輻射XPS解度解析.........................62
五.結論........................................96
參考文獻.......................................99
表目錄
表2-1. 常用於合成的離子液體 20
表2-2 碳材料和離子液體相混合運用於電化學感測相關文獻
表3-1離子液體結構與其性質(25°C) 46
表3-2 待測物質結構與血液中正常濃度範圍。 47
表4-1 奈米碳管和石墨烯比較表。 63
表4-2.石墨烯(Graphene)輔以不同離子液體偵測抗壞血酸、多巴胺及尿酸比較表。 63
表4-3.石墨烯/鈀(Graphene/Pd)輔以不同離子液體偵測抗壞血酸、多巴胺及尿酸比較表 64
表4-4. 石墨烯/鈀(Graphene/Pd)輔以不同離子液體偵測葡萄糖比較表 64
圖目錄
圖2-1石墨烯原材之 (A)、(B) TEM照片 23
圖2-2石墨烯為二維的結構並能組成其它維度碳材料的示意圖 24
圖2-3以GC、graphite/GC及CR-GO/GC做為電極,並利用DPV法偵測DNA(guanine (G), adenine (A), thymine (T), cytosine (C)) 25
圖2-4利用CV法並以CR-GO/GC (綠線)、graphite/GC (紅線)及GC (黑線)做為電極偵測(A)尿酸(UA)、抗壞血酸(AA)、多巴胺(DA) 及APAP 26
圖2-5利用CV法偵測0.1 M多巴胺(DA)、抗壞血酸(AA)及尿酸(UA) (a)以MGNF做為電極;(b)GC作為電極 27
圖2-6利用CV法於不同電極下共同偵測抗壞血酸(AA)、多巴胺(DA)及血清素(ST) 28
圖2-7 石墨烯捲起後形成的三種奈米碳管 29
圖2-8利用CV法偵測1mM多巴胺以 (a) GC做為電極,(b)單壁奈米碳管做為電極 30
圖2-9多壁奈米碳管(MWCNT)及堆疊石墨烯奈米纖維(SGNF)邊緣結構示意圖 31
圖2-10利用DPV法偵測guanine, adenine, thymine, and cytosine並以SGNF (紅線)、GMP (綠線)、 MWCNT (藍線)、EPPG (虛線)及GC作為電極並互相比較 32
圖2-11利用CV法以(a) graphene、(b) SWCNT偵測多巴胺;(c) graphene、(b) SWCNT偵測血清素 33
圖2-12利用CV法以(A) GR-CS/GCE,(B) MWCNTs-CS/GCE作為電極偵測多巴胺,以(C) GR-CS/GCE,(D) MWCNTs-CS/GCE做為電極偵測抗壞血酸,虛線代表背景電流 34
圖2-13利用CV法以 (A) pristine GONs,(B) CR-GONs,(C) ER-GONs及 (D) SWCNT做為電極偵測NADH 35
圖2-14利用CV法以(A) pristine GONs,(B) CR-GONs,(C) ER-GONs及 (D) SWCNT作為電極偵測抗壞血酸 (AA) 36
圖2-15 二氧化碳相圖與液、氣兩相間及超臨界相之示意圖 37
圖2-16 二氧化碳溫度-壓力-密度關係圖 37
圖2-17 利用超臨界二氧化碳合成鉑奈米粒子/多壁奈米碳管複合材料之TEM圖 38
圖2-18 利用超臨界二氧化碳於二氧化矽球上成長銅奈米粒子之機制示意圖 38
圖2-19角度解析XPS示意圖 39
圖3-1 超臨界二氧化碳備Graphene/Pd複合材料之實驗流程 48
圖3-2電化學生化感測之實驗流程 48
圖4-2多壁奈米碳管/鈀(MWCNT/Pd)、石墨烯/鈀(Graphen/Pd)複合材料的X光繞射圖。 66
圖4-3石墨烯原材(Graphene) (A)低倍率、(B)高倍率 TEM影像。 67
圖4-4利用超臨界流體合成的石墨烯/鈀(Graphene/Pd)複合材料(A) TEM影像;(B)為利用HADDF拍攝之影像;(C)為鈀奈米顆粒HR影像。 68
圖4-5石墨烯(Graphene)和離子液體EMI-DCA相混和後(A)低倍率、(B)高倍率TEM影像。 69
圖4-6 Graphene和離子液體BMP-NTF2相混和後(A)低倍率、(B)高倍率TEM影像、(C)EDS分析。 70
圖4-7多壁奈米碳管原材 71
圖4-8利用超臨界流體合成的鈀/奈米碳管(MWCNT/Pd),(A)明視野影像,(B)利用HADDF所得影像。 72
圖4-9石墨烯原材(Graphene)、多壁奈米碳管原材(MWCNT)分別偵測1.5 mM (A)抗壞血酸;(B)多巴胺;(C)尿酸;(D)未加待測物之背景電流,於0.1 M PBS(pH 6.6)溶液中,掃描速率為50 mV/s 73
圖4-10石墨烯原材、多壁奈米碳管原材分別偵測抗壞血酸、多巴胺、尿酸扣除背景電流後所得感應電流。 74
圖4-11多壁奈米碳管原材(MWCNT)、奈米碳管/鈀(MWCNT/Pd)分別偵測1.5 mM (A)抗壞血酸;(B)多巴胺;(C)尿酸;(D)未加待測物之背景電流,於0.1 M PBS (pH 6.6)溶液中,掃描速率為50 mV/s 75
圖4-12石墨烯原材(Pristine graphene)、石墨烯/鈀(graphene/Pd)分別偵測1.5 mM (A)抗壞血酸;(B)多巴胺;(C)尿酸於0.1 M PBS; 76
圖4-13超臨界流體合成石墨烯/鈀示意圖,(A)未進入超臨界流體前堆疊的石墨烯;(B)超臨界流體將石墨烯打開,並讓奈米顆粒均勻沉積各處;(C)脫離超臨界氣氛後,奈米顆粒均勻散佈且阻止石墨烯再次聚集堆疊 77
圖4-14石墨烯(Graphene)、石墨烯/鈀(Graphene/Pd)、多壁奈米碳管(MWCNT)及多壁奈米碳管/鈀(MWCNT/Pd)分別偵測抗壞血酸、多巴胺、尿酸扣除背景電流後所得感應電流。 78
圖4-15多壁奈米碳管(MWCNT)、多壁奈米碳管/鈀 (MWCNT/Pd)及多壁奈米碳管/BMI-PF6 (MWCNT/BMI-PF6),分別偵測1.5 mM (A)抗壞血酸;(B)多巴胺;(C)尿酸;(D)未加待測物之背景電流,於0.1 M PBS (pH 6.6)溶液中,掃描速率為 50 mV/s。 79
圖4-16石墨烯(Graphene)、石墨烯/鈀(Graphene/Pd)及石墨烯/BMI-PF6 (Graphene/BMI-PF6),分別偵測1.5 mM (A)抗壞血酸;(B)多巴胺;(C)尿酸;(D)未加待測物之背景電流,於0.1 M PBS (pH 6.6)溶液中,掃描速率為50 mV/s。 80
圖4-17多壁奈米碳管/鈀(MWCNT/Pd) 、石墨烯/鈀(Graphene/Pd)、多壁奈米碳管/BMI-PF6 (MWCNT/BMI-PF6)、石墨烯/ BMI-PF6 (Graphene/ BMI-PF6)偵測抗壞血酸、多巴胺及尿酸扣除背景電流後所得感應電流。 81
圖4-18石墨烯(Graphene)輔以不同種類離子液體,分別偵測1.5 mM (A)抗壞血酸;(B)多巴胺;(C)尿酸;(D)未加任何待測物之背景電流,於0.1 M PBS(pH 6.6)中,掃描速率為50 mV/s 82
圖4-19石墨烯/鈀(Graphene/Pd)輔以不同種類離子液體,分別偵測1.5 mM (A)抗壞血酸;(B)多巴胺;(C)尿酸;(D)未加任何待測物之背景電流,於0.1 M PBS(pH 6.6)中,掃描速率為50 mV/s 83
圖4-20石墨烯(Graphene)及石墨烯/鈀(Graphene/Pd)輔以不同離子液體,扣除背景電流後所得應答電流圖,(A)抗壞血酸;(B)多巴胺;(C)尿酸。 84
圖4-21利用計時安培法,以石墨烯/EMI-SCN (Graphene/EMI-SCN)、石墨烯/鈀/EMI-SCN (Graphene/Pd/ EMI-SCN)偵測多巴胺(A) 定電位於-0.23 V,於0.1 M PBS (pH6.6)中;(B)線性校正曲線 85
圖4-22利用循環伏安法,以石墨烯(Graphene)、石墨烯/鈀(Graphene/Pd)及石墨烯/鈀/EMI-SCN (Graphene/Pd/ EMI-SCN)共同偵測抗壞血酸、多巴胺及尿酸 86
圖4-23利用DPV法,以石墨烯/EMI-SCN (Graphene/EMI-SCN)共同偵測抗壞血酸、多巴胺及尿酸,固定抗壞血酸及尿酸濃度,不斷添加多巴胺 87
圖4-24利用循環伏安法,將石墨烯及離子液體EMI-SCN利用研磨(Grind)、三明治法(Sandwich)及超音波震盪(Ultrasonic),分別偵測(A)抗壞血酸;(B)多巴胺;(C)尿酸;(D)未加任何待測物之背景電流 88
圖4-25石墨烯及離子液體EMI-SCN利用研磨(Grind)、三明治法(Sandwich)及超音波震盪(Ultrasonic)扣除背景電流後所得感應電流。 89
圖4-26石墨烯(Graphene)、石墨烯/鈀(Graphene/Pd)、石墨烯/BMI-PF6及(Graphene/ BMI-PF6)、石墨烯/鈀/BMI-PF6(Graphene/鈀/BMI-PF6)偵測(A)7.5 mM葡萄糖;(B)未加待測物之背景電流,於0.1 M NaOH中,掃描速率10 mV/s。 90
圖4-27石墨烯(Graphene)及輔以EMI-NTF2、BMI-PF6及BMP-DCA (A)偵測7.5 mM葡萄糖,(B)未加待測物之背景電流 91
圖4-28石墨烯/鈀(Graphene/Pd)輔以各種離子液體偵測 (A) 7.5 mM葡萄糖,(B)未加任何待測物之背景電流(C)扣除背景電流所得感應電流,於0.1M NaOH中,掃描速率10 mV/s。 92
圖4-29利用計時安培法,以石墨烯鈀/ BMP-NTF2 (Graphene/Pd/BMP-NTF2)、石墨烯/鈀(Graphene/Pd)偵測多巴胺(A)定電位於 -0.08 V,於0.1 M NaOH (pH13)中;(B)線性校正圖 93
圖4-30 XPS分析離子液體EMI-DCA,僅有離子液體時 (a)分析較表層,(b)分析較深層;EMI-DCA滴於石墨烯時(C)分析較表層,(d)分析較深層。 94
圖4-31 XPS分析離子液體EMI-NTF2,僅有離子液體時 (a)分析較表層,(b)分析較深層;EMI-NTF2滴於石墨烯時(C)分析較表層,(d)分析較深層。 95
圖5-1 石墨烯/鈀(graphene/Pd)、石墨烯/鈀/EMI-SCN (graphene/Pd/EMI-SCN)、石墨烯/鈀/BMP-NTF2 (graphene/Pd/BMP-NTF2)及石墨烯/EMI-SCN(graphene/EMI-SCN)共同偵測7.5 mM 葡萄糖及1.5 mM 抗壞血酸,於0.1 M NaOH 中,掃描速率為50 mV/s。 98
參考文獻 參考文獻
1.Myung, Y., et al., Nonenzymatic Amperometric Glucose Sensing of Platinum, Copper Sulfide, and Tin Oxide Nanoparticle-Carbon Nanotube Hybrid Nanostructures. The Journal of Physical Chemistry C, 2009. 113(4): p. 1251-1259.
2.Chen, X.-m., et al., Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes. Biosensors and Bioelectronics, 2010. 25(7): p. 1803-1808.
3.Huang, K.-J., et al., Enhanced sensing of dopamine in the present of ascorbic acid based on graphene/poly(p-aminobenzoic acid) composite film. Colloids and Surfaces B: Biointerfaces, 2011. 88(1): p. 310-314.
4.Bao, Y., et al., Graphene Oxide-Templated Polyaniline Microsheets toward Simultaneous Electrochemical Determination of AA/DA/UA. Electroanalysis, 2011. 23(4): p. 878-884.
5.Mallesha, M., et al., Functionalized-graphene modified graphite electrode for the selective determination of dopamine in presence of uric acid and ascorbic acid. Bioelectrochemistry, 2011. 81(2): p. 104-108.
6.Meng, L., et al., Nonenzymatic Electrochemical Detection of Glucose Based on Palladium−Single-Walled Carbon Nanotube Hybrid Nanostructures. Analytical Chemistry, 2009. 81(17): p. 7271-7280.
7.Chen, Y.S. and J.H. Huang, Arrayed CNT-Ni nanocomposites grown directly on Si substrate for amperometric detection of ethanol. Biosens Bioelectron, 2010. 26(1): p. 207-12.
8.McCreery, R.L., Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chemical Reviews, 2008. 108(7): p. 2646-2687.
9. Allen, M.J., V.C. Tung, and R.B. Kaner, Honeycomb Carbon: A Review of Graphene. Chemical Reviews, 2009. 110(1): p. 132-145.
10.Hernandez, Y., et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nano, 2008. 3(9): p. 563-568.
11.Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-9.
12.Geim, A.K. and K.S. Novoselov, The rise of graphene. Nat Mater, 2007. 6(3): p. 183-191.
13. Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339.
14.He, Q., et al., Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films: Fabrication and Sensing Applications. ACS Nano, 2010. 4(6): p. 3201-3208.
15.Zhu, Y., et al., Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater, 2010. 22(35): p. 3906-24.
16.Loh, K.P., et al., Graphene oxide as a chemically tunable platform for optical applications. Nat Chem, 2010. 2(12): p. 1015-1024.
17.Wang, Y., et al., Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing. ACS Nano, 2010. 4(4): p. 1790-1798.
18.Chen, D., L. Tang, and J. Li, Graphene-based materials in electrochemistry. Chem Soc Rev, 2010. 39(8): p. 3157-80.
19. Zhou, M., Y. Zhai, and S. Dong, Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide. Analytical Chemistry, 2009. 81(14): p. 5603-5613.
20.Shang, N.G., et al., Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes. Advanced Functional Materials, 2008. 18(21): p. 3506-3514.
21.Kachoosangi, R.T. and R.G. Compton, A simple electroanalytical methodology for the simultaneous determination of dopamine, serotonin and ascorbic acid using an unmodified edge plane pyrolytic graphite electrode. Anal Bioanal Chem, 2007. 387(8): p. 2793-800.
22.Zhu, H.W., et al., Direct synthesis of long single-walled carbon nanotube strands. Science, 2002. 296(5569): p. 884-6.
23.Balasubramanian, K. and M. Burghard, Chemically functionalized carbon nanotubes. Small, 2005. 1(2): p. 180-92.
24.Avouris, P., M. Freitag, and V. Perebeinos, Carbon-nanotube photonics and optoelectronics. Nat Photon, 2008. 2(6): p. 341-350.
25. Qian, H., et al., Hierarchical Composites Reinforced with Carbon Nanotube Grafted Fibers: The Potential Assessed at the Single Fiber Level. Chemistry of Materials, 2008. 20(5): p. 1862-1869.
26.Chaudhary, S., et al., Hierarchical Placement and Associated Optoelectronic Impact of Carbon Nanotubes in Polymer-Fullerene Solar Cells. Nano Letters, 2007. 7(7): p. 1973-1979.
27.Chen, X.M., et al., A novel non-enzymatic ECL sensor for glucose using palladium nanoparticles supported on functional carbon nanotubes. Biosens Bioelectron, 2009. 24(12): p. 3475-80.
28.Dai, L., et al., Aligned nanotubes. Chemphyschem, 2003. 4(11): p. 1150-69.
29.Wei, B.Q., et al., Microfabrication technology: Organized assembly of carbon nanotubes. Nature, 2002. 416(6880): p. 495-496.
30.Qu, L., F. Du, and L. Dai, Preferential Syntheses of Semiconducting Vertically Aligned Single-Walled Carbon Nanotubes for Direct Use in FETs. Nano Letters, 2008. 8(9): p. 2682-2687.
31.Campbell, J.K., L. Sun, and R.M. Crooks, Electrochemistry Using Single Carbon Nanotubes. Journal of the American Chemical Society, 1999. 121(15): p. 3779-3780.
32.Dumitrescu, I., et al., Ultrathin Carbon Nanotube Mat Electrodes for Enhanced Amperometric Detection. Advanced Materials, 2009. 21(30): p. 3105-3109.
33.Pumera, M., Carbon Nanotubes Contain Residual Metal Catalyst Nanoparticles even after Washing with Nitric Acid at Elevated Temperature Because These Metal Nanoparticles Are Sheathed by Several Graphene Sheets. Langmuir, 2007. 23(11): p. 6453-6458.
34. Fukushima, T., et al., Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science, 2003. 300(5628): p. 2072-4.
35.Sudhakara Prasad, K., G. Muthuraman, and J.-M. Zen, The role of oxygen functionalities and edge plane sites on screen-printed carbon electrodes for simultaneous determination of dopamine, uric acid and ascorbic acid. Electrochemistry Communications, 2008. 10(4): p. 559-563.
36.Li, D., et al., Processable aqueous dispersions of graphene nanosheets. Nat Nano, 2008. 3(2): p. 101-105.
37.Ambrosi, A. and M. Pumera, Stacked graphene nanofibers for electrochemical oxidation of DNA bases. Phys Chem Chem Phys, 2010. 12(31): p. 8943-7.
38.Alwarappan, S., et al., Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications. The Journal of Physical Chemistry C, 2009. 113(20): p. 8853-8857.
39.Wang, Y., et al., Application of graphene-modified electrode for selective detection of dopamine. Electrochemistry Communications, 2009. 11(4): p. 889-892.
40.Wang, J., et al., Comparative studies on electrochemical activity of graphene nanosheets and carbon nanotubes. Electrochemistry Communications, 2009. 11(10): p. 1892-1895.
41.Welch, C. and R. Compton, The use of nanoparticles in electroanalysis: a review. Analytical and Bioanalytical Chemistry, 2006. 384(3): p. 601-619.
42.Hrapovic, S., et al., Metallic Nanoparticle−Carbon Nanotube Composites for Electrochemical Determination of Explosive Nitroaromatic Compounds. Analytical Chemistry, 2006. 78(15): p. 5504-5512.
43.Yang, M., et al., Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens Bioelectron, 2006. 21(7): p. 1125-31.
44.Wang, Z., et al., The synthesis of ionic-liquid-functionalized multiwalled carbon nanotubes decorated with highly dispersed Au nanoparticles and their use in oxygen reduction by electrocatalysis. Carbon, 2008. 46(13): p. 1687-1692.
45.Yang, S., et al., Pd nanoparticles supported on functionalized multi-walled carbon nanotubes (MWCNTs) and electrooxidation for formic acid. Journal of Power Sources, 2008. 175(1): p. 26-32.
46.Dhar, S., et al., Targeted Single-Wall Carbon Nanotube-Mediated Pt(IV) Prodrug Delivery Using Folate as a Homing Device. Journal of the American Chemical Society, 2008. 130(34): p. 11467-11476.
47.Yang, G.-W., et al., Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Carbon, 2008. 46(5): p. 747-752.
48.Chen, C., et al., Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). J Hazard Mater, 2009. 164(2-3): p. 923-8.
49.Yoo, E., et al., Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface. Nano Letters, 2009. 9(6): p. 2255-2259.
50.Chen, X., et al., Synthesis of “Clean” and Well-Dispersive Pd Nanoparticles with Excellent Electrocatalytic Property on Graphene Oxide. Journal of the American Chemical Society, 2011. 133(11): p. 3693-3695.
51.Li, F., et al., The synthesis of perylene-coated graphene sheets decorated with Au nanoparticles and its electrocatalysis toward oxygen reduction. Journal of Materials Chemistry, 2009. 19(23): p. 4022.
52.Huang, Z., et al., Preparation of well-dispersed PdAu bimetallic nanoparticles on reduced graphene oxide sheets with excellent electrochemical activity for ethanol oxidation in alkaline media. Journal of Materials Chemistry, 2012. 22(5): p. 1781.
53. Leitner, W., Green chemistry: Designed to dissolve. Nature, 2000. 405(6783): p. 129-130.
54.Leitner, W., Supercritical Carbon Dioxide as a Green Reaction Medium for Catalysis. Accounts of Chemical Research, 2002. 35(9): p. 746-756.
55.DeSimone, J.M., Practical approaches to green solvents. Science, 2002. 297(5582): p. 799-803.
56.Bayrakceken, A., et al., Pt-based electrocatalysts for polymer electrolyte membrane fuel cells prepared by supercritical deposition technique. Journal of Power Sources, 2008. 179(2): p. 532-540.
57.Marre, S., F. Cansell, and C. Aymonier, Design at the nanometre scale of multifunctional materials using supercritical fluid chemical deposition. Nanotechnology, 2006. 17(18): p. 4594-9.
58.Ye, X.R., Y. Lin, and C.M. Wai, Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide. Chemical Communications, 2003(5): p. 642-643.
59. Sun, Z., et al., Decoration carbon nanotubes with Pd and Ru nanocrystals via an inorganic reaction route in supercritical carbon dioxide-methanol solution. J Colloid Interface Sci, 2006. 304(2): p. 323-8.
60.Cangul, B., et al., Preparation of carbon black supported Pd, Pt and Pd–Pt nanoparticles using supercritical CO2 deposition. The Journal of Supercritical Fluids, 2009. 50(1): p. 82-90.
61.Lin, Y., X. Cui, and X. Ye, Electrocatalytic reactivity for oxygen reduction of palladium-modified carbon nanotubes synthesized in supercritical fluid. Electrochemistry Communications, 2005. 7(3): p. 267-274.
62.Liu, X., et al., Reactive Deposition of Palladium Nanoparticles onto Zeolite Membranes in Supercritical CO2. Industrial & Engineering Chemistry Research, 2010. 49(18): p. 8826-8831.
63.Shiddiky, M.J. and A.A. Torriero, Application of ionic liquids in electrochemical sensing systems. Biosens Bioelectron, 2011. 26(5): p. 1775-87.
64.Gale, R.J., B. Gilbert, and R.A. Osteryoung, Raman spectra of molten aluminum chloride: 1-butylpyridinium chloride systems at ambient temperatures. Inorganic Chemistry, 1978. 17(10): p. 2728-2729.
65.Wei, D. and A. Ivaska, Applications of ionic liquids in electrochemical sensors. Anal Chim Acta, 2008. 607(2): p. 126-35.
66.Anastas, P.T. and J.B. Zimmerman, Peer Reviewed: Design Through the 12 Principles of Green Engineering. Environmental Science & Technology, 2003. 37(5): p. 94A-101A.
67.Shan, C., et al., Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene. Biosens Bioelectron, 2010. 25(6): p. 1504-8.
68.Zhang, Q., et al., Fabrication of polymeric ionic liquid/graphene nanocomposite for glucose oxidase immobilization and direct electrochemistry. Biosens Bioelectron, 2011. 26(5): p. 2632-7.
69.Liu, Y., X. Zou, and S. Dong, Electrochemical characteristics of facile prepared carbon nanotubes–ionic liquid gel modified microelectrode and application in bioelectrochemistry. Electrochemistry Communications, 2006. 8(9): p. 1429-1434.
70.Lu, X., et al., Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid. Electrochemistry Communications, 2006. 8(5): p. 874-878.
71.Laszlo, J.A. and D.L. Compton, Comparison of peroxidase activities of hemin, cytochrome c and microperoxidase-11 in molecular solvents and imidazolium-based ionic liquids. Journal of Molecular Catalysis B: Enzymatic, 2002. 18(1–3): p. 109-120.
72.Persson, M. and U.T. Bornscheuer, Increased stability of an esterase from Bacillus stearothermophilus in ionic liquids as compared to organic solvents. Journal of Molecular Catalysis B: Enzymatic, 2003. 22(1–2): p. 21-27.
73.Liu, Y., et al., Highly active horseradish peroxidase immobilized in 1-butyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquid based sol-gel host materials. Chem Commun (Camb), 2005(13): p. 1778-80.
74.Safavi, A., et al., Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode. Analytical Biochemistry, 2006. 359(2): p. 224-9.
75.Maleki, N., A. Safavi, and F. Tajabadi, High-Performance Carbon Composite Electrode Based on an Ionic Liquid as a Binder. Analytical Chemistry, 2006. 78(11): p. 3820-3826.
76.Wang, Z., et al., Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. Analyst, 2002. 127(5): p. 653-658.
77.Wu, K., J. Fei, and S. Hu, Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. Analytical Biochemistry, 2003. 318(1): p. 100-106.
78.Zhang, M., et al., Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid. Biosensors and Bioelectronics, 2005. 20(7): p. 1270-1276.
79.Liu, H., Y. Liu, and J. Li, Ionic liquids in surface electrochemistry. Phys Chem Chem Phys, 2010. 12(8): p. 1685-97.
80.Yang, Y.-C., et al., Amplified immunosensing based on ionic liquid-doped chitosan film as a matrix and Au nanoparticle decorated graphene nanosheets as labels. Electrochimica Acta, 2011. 56(17): p. 6021-6025.
81.Sun, W., et al., Application of chitosan/Fe3O4 microsphere-graphene composite modified carbon ionic liquid electrode for the electrochemical detection of the PCR product of soybean Lectin gene sequence. Talanta, 2011. 87: p. 106-12.
82.Qiu, Y., et al., Electrochemical detection of DNA damage induced by acrylamide and its metabolite at the graphene-ionic liquid-Nafion modified pyrolytic graphite electrode. J Hazard Mater, 2011. 190(1-3): p. 480-5.
83.Xiao, F., et al., Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M=Ru, Pd and Au) nanoparticles on carbon nanotubes–ionic liquid composite film. Biosensors and Bioelectronics, 2009. 24(12): p. 3481-3486.
84.Yan, Q., et al., Voltammetric Determination of Uric Acid with a Glassy Carbon Electrode Coated by Paste of Multiwalled Carbon Nanotubes and Ionic Liquid. Electroanalysis, 2006. 18(11): p. 1075-1080.
85.Zhu, H., et al., Nonenzymatic glucose voltammetric sensor based on gold nanoparticles/carbon nanotubes/ionic liquid nanocomposite. Talanta, 2009. 79(5): p. 1446-1453.
86.Zhao, Y., et al., Structural and characteristic analysis of carbon nanotubes-ionic liquid gel biosensor. Electrochemistry Communications, 2007. 9(10): p. 2457-2462.
87.Zhao, F., et al., Electrochemical and Bioelectrochemistry Properties of Room-Temperature Ionic Liquids and Carbon Composite Materials. Analytical Chemistry, 2004. 76(17): p. 4960-4967.
88.Safavi, A., N. Maleki, and E. Farjami, Fabrication of a glucose sensor based on a novel nanocomposite electrode. Biosensors and Bioelectronics, 2009. 24(6): p. 1655-1660.
89.Safavi, A., et al., High electrocatalytic effect of palladium nanoparticle arrays electrodeposited on carbon ionic liquid electrode. Electrochemistry Communications, 2007. 9(8): p. 1963-1968.
90.Du, M., et al., Ionic liquid-functionalized graphene as modifier for electrochemical and electrocatalytic improvement: comparison of different carbon electrodes. Anal Chim Acta, 2011. 690(2): p. 169-74.
91. Li, F., et al., Synthesis of Pt/ionic liquid/graphene nanocomposite and its simultaneous determination of ascorbic acid and dopamine. Talanta, 2010. 81(3): p. 1063-8.
92.Ho Yang, M., et al., Directed Self-Assembly of Gold Nanoparticles on Graphene-Ionic Liquid Hybrid for Enhancing Electrocatalytic Activity. Electroanalysis, 2011. 23(4): p. 850-857.
93.Li, Y., et al., Selective and sensitive detection of dopamine in the presence of ascorbic acid by molecular sieve/ionic liquids composite electrode. Electrochimica Acta, 2011. 56(6): p. 2730-2734.
94.Sun, W., et al., Electrochemical Determination of Ascorbic Acid in Room Temperature Ionic Liquid BPPF6 Modified Carbon Paste Electrode. Electroanalysis, 2007. 19(15): p. 1597-1602.
95.Sun, W., M. Yang, and K. Jiao, Electrocatalytic oxidation of dopamine at an ionic liquid modified carbon paste electrode and its analytical application. Anal Bioanal Chem, 2007. 389(4): p. 1283-91.
96.Pandurangachar, M., et al., Electrochemical deposition of 1-butyl-4-methyl-pyridinium tetrafluroborate ionic liquid on carbon paste electrode and its application for the simultaneous determination of dopamine, ascorbic acid and uric acid. Journal of Molecular Liquids, 2011. 158(1): p. 13-17.
97.Zhao, Y., et al., Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta, 2005. 66(1): p. 51-7.
98.Kachoosangi, R.T., et al., Carbon nanotube-ionic liquid composite sensors and biosensors. Anal Chem, 2009. 81(1): p. 435-42.
99.Huang, K.-J., et al., An electrochemical amperometric immunobiosensor for label-free detection of α-fetoprotein based on amine-functionalized graphene and gold nanoparticles modified carbon ionic liquid electrode. Journal of Electroanalytical Chemistry, 2011. 656(1-2): p. 72-77.
100.Liu, Z., et al., High sensitive simultaneous determination of hydroquinone and catechol based on graphene/BMIMPF6 nanocomposite modified electrode. Sensors and Actuators B: Chemical, 2011. 157(2): p. 540-546.
101.Chai, J., et al., Hollow flower-like AuPd alloy nanoparticles: One step synthesis, self-assembly on ionic liquid-functionalized graphene, and electrooxidation of formic acid. Journal of Materials Chemistry, 2011. 21(44): p. 17922.
102.Maleki, N., A. Safavi, and F. Tajabadi, Investigation of the Role of Ionic Liquids in Imparting Electrocatalytic Behavior to Carbon Paste Electrode. Electroanalysis, 2007. 19(21): p. 2247-2250.
103.Zhang, Q., et al., Fabrication of polymeric ionic liquid/graphene nanocomposite for glucose oxidase immobilization and direct electrochemistry. Biosens Bioelectron, 2011. 26(5): p. 2632-7.
104.Yang, M.H., et al., Development of a Glucose Biosensor Using Advanced Electrode Modified by Nanohybrid Composing Chemically Modified Graphene and Ionic Liquid. Electroanalysis, 2010. 22(11): p. 1223-1228.
指導教授 張仍奎(Jeng-Kuei Chang) 審核日期 2012-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明