博碩士論文 993209013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.144.40.216
姓名 范晨彥(Chen-yen Fan)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 利用超臨界流體所合成氧化錳/石墨烯奈米複合材料之擬電容特性
(Pseudocapacitive Properties of Manganese Oxide/Graphene Nanocomposites Synthesized Using Supercritical Fluid)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 陽極沉積釩氧化物於離子液體中之擬電容行為
★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 離子液體電解質應用於石墨烯超級電容之特性分析★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極
★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極★ 電解質添加劑對鋅二次電池陽極電化學性質的影響
★ 電化學法所製備石墨烯及其硼摻雜改質之 超級電容特性分析★ 氫化二氧化鈦作為鋰、鈉、鎂鋰雙離子電池電極活性材料之電化學性質研究
★ 活性碳之粒徑與表面官能基以及所搭配的電解質配方對超高電容特性之影響★ 超臨界CO2合成SnO2、CoCO3與石墨烯複合材之儲鋰特性及陽極沉積層狀V2O5之儲鈉特性研究
★ 高濃度電解質於鋰電池知應用研究★ 熱解法製備硬碳材料應用於鈉離子電池負極
★ 活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響★ 離子液體電解質於鈉離子電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以化學還原法作為基礎,第一次成功的利用超臨界二氧化碳製程技術製備氧化錳之超高電容器電極材料,並藉由調變壓力、溫度、時間等參數及添加石墨烯與離子液體等方式進而提升其電容行為。
實驗結果指出,利用超臨界二氧化碳製程所合成出之氧化錳顆粒較一般常壓大氣製程來的小顆,並且因為與電解液接觸面積大,電容性質較佳,其不同速率下之維持率(C500/C50)(以CV法計算出500 mV/s比電容值(C500)與50 mV/s 比電容值(C50)之比值)為0.69,其值較常壓大氣方法(C500/C50=0.59)來的高。
因為氧化錳自身導電性較低,本實驗以添加不同碳材(奈米碳管與石墨烯)降低氧化錳的團聚現象進而提升氧化錳的導電性。相較於傳統常壓製程,利用超臨界流體所合成之氧化錳/石墨烯複合材不僅可因此製程均勻地將氧化錳分散於石墨烯上,還可利用超臨界流體之高滲透特性撐開石墨層間距使石墨烯使用效率提升,故以超臨界流體於氧化錳中添加石墨烯之電容增益效果(120%)將會比傳統常壓下氧化錳添加石墨烯之電容增益(108%)來的高,其不同速率下之維持率C500/C50可達0.78。
最後,將此氧化錳/石墨烯複合材與離子液體(EMI-NTf2)做結合,因離子液體可填補複合材間空隙位置而提升電流傳遞路徑,將更進一步的提升其電容行為,其電容維持率(C500/C50)甚至可達0.86,而若對此電極進行10,000次500 mV/s 之CV循環壽命測試後,仍可擁有98.3 % 之電容維持率。並且在進行壽命測試後其功率密度將可明顯提升。
摘要(英) In this study, we successfully used supercritical carbon dioxide (ScCO2) method to synthesis manganese oxide as supercapacitor electrode material. Herein, pressure, temperature and reaction time were investigated to enhance capacitance as well as combination of graphene and ionic liquid aim to improve their performance.
The result showed, synthesis manganese oxide by using supercritical carbon dioxide technique can get smaller manganese oxide powder than using ambient method, then will have higher interface between powder and electrolyte, the capacitance will be higher, and the different rate retention (C500/C50) (calculate by CV test using 500 mV/s capacitance divide 50 mV/s capacitance) exhibit at 0.69, is higher than ambient method (0.59).
But manganese oxide has poor intrinsic conductivity, in this study, we also add different carbonaceous materials (CNT or graphene) to decrease MnO2 aggregation condition to improve manganese oxide conductivity. Compare with traditional ambient method, using ScCO2 method synthesis manganese oxide/graphene not only make MnO2 disperse well on graphene but also increase distance between graphene layers that enhance graphene accessible surface areas, so add graphene with MnO2 by using ScCO2 method will better than using Ambient method, and the different rate retention up to 0.78.
Finally, we combined ionic liquid (EMI-NTf2) with this MnO2/graphene composite, because ionic liquid can be full filled interval between MnO2/graphene composite, then make electrons has more pathway to transfer, obtained capacitance higher again, and the different rate retention reached up to 0.86, Besides, the cycle life after 500 mV/s CV test 10,000 times still maintain at 98.3 % and have higher power in compare with initial behaviors.
關鍵字(中) ★ 氧化錳
★ 石墨烯
★ 超高電容器
★ 超臨界流體
★ 離子液體
關鍵字(英) ★ supercritical fluid
★ supercapacitors
★ graphene
★ manganese oxide
★ ionic liquid
論文目次 中文摘要.........................................i
Abstract........................................iii
致謝詞...........................................v
目錄............................................ vi
表目錄........................... ................ix
圖目錄...........................................x
第一章 前言...................................... 1
第二章 背景資料與文獻回顧........................... 4
2-1 儲能元件..................................... 4
2-2 超高電容器的分類及工作原理...................... 6
2-3 氧化錳製備方式................................ 11
2-4 利用超臨界二氧化碳合成奈米顆粒................... 14
2-5 氧化錳與石墨烯複合材........................... 17
2-6 奈米顆粒之包覆................................ 19
第三章 實驗步驟與方法.............................. 32
3-1 錳氧化物之製備................................ 32
3-2 碳材之準備................................... 33
3-2-1 石墨烯之製備 ................................33
3-2-2 碳管之取得................................. 33
3-3 氧化錳與碳材之複合材之製備.......................34
3-3-1 常壓下合成氧化錳/石墨烯(奈米碳管)之複合材 ........34
3-3-2 超臨界法中合成氧化錳/石墨烯(奈米碳管)之複合材.... 34
3-4 材料特性分析.................................. 35
3-5 電化學性質測試................................ 35
3-5-1 電極材料之製備.............................. 35
3-5-2 電化學裝置................................. 35
3-6 電容性質之評估................................ 36
第四章 結果與討論................................. 42
4-1 超臨界法合成錳氧化物之材料特性及擬電容行為之探討.... 42
4-1-1 不同壓力對錳氧化物的電化學特性影響.............. 42
4-1-2 不同溫度對錳氧化物的電化學特性影響.............. 45
4-2 錳氧化物與石墨烯複合材之電化學特性................ 46
4-2-1 常壓下添加碳材對氧化錳電化學性質的影響........... 47
4-2-2 超臨界流體合成法對氧化錳/碳材複合材的影響........ 47
4-2-3 不同時間對氧化錳/石墨烯複合材的電化學特性影響..... 49
4-3 離子液體添加以增進電容值........................ 50
第五章 結論...................................... 75
第六章 參考文獻................................... 76
參考文獻 1. R. Kotz,M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta, 2000. 45(15-16): p. 2483-2498.
2. J.P. Zheng, The Limitations of Energy Density for Electrochemical Capacitors. J. Electrochem. Soc., 1997. 144(6): p. 2026.
3. C. Arbizzani, M. Mastragostino,F. Soavi, New trends in electrochemical supercapacitors. J. Power Sources, 2001. 100(1–2): p. 164-170.
4. K. Jurewicz, Ammoxidation of active carbons for improvement of supercapacitor characteristics. Electrochim. Acta, 2003. 48(11): p. 1491-1498.
5. K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz,J. Machnikowski, Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochim. Acta, 2004. 49(4): p. 515-523.
6. C. Portet, P.L. Taberna, P. Simon,E. Flahaut, Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte. J. Power Sources, 2005. 139(1-2): p. 371-378.
7. M.M. Shaijumon, F.S. Ou, L. Ci,P.M. Ajayan, Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes. Chem Commun (Camb), 2008(20): p. 2373-2375.
8. C. Masarapu, H.F. Zeng, K.H. Hung,B. Wei, Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS nano, 2009. 3(8): p. 2199-2206.
9. S.W. Lee, B.S. Kim, S. Chen, Y. Shao-Horn,P.T. Hammond, Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J. Am. Chem. Soc., 2009. 131(2): p. 671-679.
10. L. Hu, M. Pasta, F.L. Mantia, L. Cui, S. Jeong, H.D. Deshazer, J.W. Choi, S.M. Han,Y. Cui, Stretchable, porous, and conductive energy textiles. Nano Lett, 2010. 10(2): p. 708-714.
11. A.G. Pandolfo,A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources, 2006. 157(1): p. 11-27.
12. X. Lu, H. Dou, B. Gao, C. Yuan, S. Yang, L. Hao, L. Shen,X. Zhang, A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors. Electrochim. Acta, 2011. 56(14): p. 5115-5121.
13. M. Pumera, Electrochemistry of graphene: new horizons for sensing and energy storage. Chem Rec, 2009. 9(4): p. 211-223.
14. M.D. Stoller, S. Park, Y. Zhu, J. An,R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett, 2008. 8(10): p. 3498-3502.
15. L.L. Zhang,X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem Soc Rev, 2009. 38(9): p. 2520-2531.
16. K. Naoi,P. Simon, J. Electrochem. Soc. Interface, 2008. 17: p. 34-37.
17. J.P. Zheng, Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors. J. Electrochem. Soc., 1995. 142(8): p. 2699-2702.
18. C.-C. Hu,W.-C. Chen, Effects of substrates on the capacitive performance of RuOx‧nH2O and activated carbon–RuOx electrodes for supercapacitors. Electrochim. Acta, 2004. 49(21): p. 3469-3477.
19. H.Y. Lee,J.B. Goodenough, Supercapacitor Behavior with KCl Electrolyte. J. Solid State Chem., 1999. 144(1): p. 220-223.
20. M. Toupin, T. Brousse,D. Belanger, Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. Chem. Mater., 2004. 16(16): p. 3184-3190.
21. S. Wen, J.-W. Lee, I.-H. Yeo, J. Park,S.-i. Mho, The role of cations of the electrolyte for the pseudocapacitive behavior of metal oxide electrodes, MnO2 and RuO2. Electrochim. Acta, 2004. 50(2-3): p. 849-855.
22. R.N. Reddy,R.G. Reddy, Sol–gel MnO2 as an electrode material for electrochemical capacitors. J. Power Sources, 2003. 124(1): p. 330-337.
23. R.N. Reddy,R.G. Reddy, Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material. J. Power Sources, 2004. 132(1-2): p. 315-320.
24. H.Y. Lee, V. Manivannan,J.B. Goodenough, Electrochemical capacitors with KCl electrolyte. Comptes Rendus de l’’Academie des Sciences - Series IIC - Chemistry, 1999. 2(11-13): p. 565-577.
25. O. Aschenbrenner, S. Kemper, N. Dahmen, K. Schaber,E. Dinjus, Solubility of β-diketonates, cyclopentadienyls, and cyclooctadiene complexes with various metals in supercritical carbon dioxide. J. Supercrit. Fluids, 2007. 41(2): p. 179-186.
26. X.-R. Ye, Y. Lin, C. Wang, M.H. Engelhard, Y. Wang,C.M. Wai, Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes. J. Mater. Chem., 2004. 14(5): p. 908-913.
27. E. Reverchon,R. Adami, Nanomaterials and supercritical fluids. The Journal of Supercritical Fluids, 2006. 37(1): p. 1-22.
28. L. Fu, Z. Liu, Y. Liu, B. Han, P. Hu, L. Cao,D. Zhu, Beaded Cobalt Oxide Nanoparticles along Carbon Nanotubes: Towards More Highly Integrated Electronic Devices. Adv. Mater., 2005. 17(2): p. 217-221.
29. S.E. Bozbag, L.C. Zhang, M. Aindow,C. Erkey, Carbon aerogel supported nickel nanoparticles and nanorods using supercritical deposition. The Journal of Supercritical Fluids, 2012. 66: p. 265-273.
30. J.J. Watkins,T.J. McCarthy, Polymer/Metal Nanocomposite Synthesis in Supercritical CO2. Chem. Mater., 1995. 7(11): p. 1991-1994.
31. Y. Zhang, D. Kang, C. Saquing, M. Aindow,C. Erkey, Supported Platinum Nanoparticles by Supercritical Deposition. Industrial & Engineering Chemistry Research, 2005. 44(11): p. 4161-4164.
32. S.E. Bozbag, N.S. Yasar, L.C. Zhang, M. Aindow,C. Erkey, Adsorption of Pt(cod)me2 onto organic aerogels from supercritical solutions for the synthesis of supported platinum nanoparticles. The Journal of Supercritical Fluids, 2011. 56(1): p. 105-113.
33. X.R. Ye, Y. Lin,C.M. Wai, Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide. Chem. Commun., 2003(5): p. 642-643.
34. Q. Xu, H. Fan, Y. Guo,Y. Cao, Preparation of titania/silica mesoporous composites with activated carbon template in supercritical carbon dioxide. Materials Science and Engineering: A, 2006. 435-436: p. 158-162.
35. J. Jiao, Q. Xu,L. Li, Porous TiO2/SiO2 composite prepared using PEG as template direction reagent with assistance of supercritical CO2. J. Colloid Interface Sci., 2007. 316(2): p. 596-603.
36. E. Kondoh,H. Kato, Characteristics of copper deposition in a supercritical CO2 fluid. Microelectron. Eng., 2002. 64(1-4): p. 495-499.
37. E. Kondoh, Deposition of Cu and Ru Thin Films in Deep Nanotrenches/Holes Using Supercritical Carbon Dioxide. Japanese Journal of Applied Physics, 2004. 43(6B): p. 3928-3933.
38. X.R. Ye, Y. Lin, C. Wang,C.M. Wai, Supercritical Fluid Fabrication of Metal Nanowires and Nanorods Templated by Multiwalled Carbon Nanotubes. Adv. Mater., 2003. 15(4): p. 316-319.
39. T. Gougousi, D. Barua, E.D. Young,G.N. Parsons, Metal oxide thin films deposited from metal organic precursors in supercritical CO2 solutions. Chem. Mater., 2005. 17(20): p. 5093-5100.
40. G. An, N. Na, X. Zhang, Z. Miao, S. Miao, K. Ding,Z. Liu, SnO2/carbon nanotube nanocomposites synthesized in supercritical fluids: highly efficient materials for use as a chemical sensor and as the anode of a lithium-ion battery. Nanotechnology, 2007. 18(43): p. 435707.
41. S.R. Sivakkumar, J.M. Ko, D.Y. Kim, B.C. Kim,G.G. Wallace, Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors. Electrochim. Acta, 2007. 52(25): p. 7377-7385.
42. A.E. Fischer, K.A. Pettigrew, D.R. Rolison, R.M. Stroud,J.W. Long, Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Lett, 2007. 7(2): p. 281-286.
43. K. Rajendra Prasad,N. Miura, Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochem. Commun., 2004. 6(10): p. 1004-1008.
44. X. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li,J. Shi, MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors. The journal of physical chemistry. B, 2006. 110(12): p. 6015-6019.
45. X. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li,J. Shi, A structure of MnO2 embedded in CMK-3 framework developed by a redox method. Microporous Mesoporous Mater., 2006. 91(1-3): p. 120-127.
46. G.R. Li, Z.P. Feng, Y.N. Ou, D. Wu, R. Fu,Y.X. Tong, Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors. Langmuir : the ACS journal of surfaces and colloids, 2010. 26(4): p. 2209-2213.
47. V. Subramanian, H. Zhu,B. Wei, Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. Electrochem. Commun., 2006. 8(5): p. 827-832.
48. Y. Hou, Y. Cheng, T. Hobson,J. Liu, Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett, 2010. 10(7): p. 2727-2733.
49. R. Liu,S.B. Lee, MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J. Am. Chem. Soc., 2008. 130(10): p. 2942-2943.
50. F.-J. Liu, Electrodeposition of manganese dioxide in three-dimensional poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonic acid)–polyaniline for supercapacitor. J. Power Sources, 2008. 182(1): p. 383-388.
51. L.-J. Sun,X.-X. Liu, Electrodepositions and capacitive properties of hybrid films of polyaniline and manganese dioxide with fibrous morphologies. Eur. Polym. J., 2008. 44(1): p. 219-224.
52. Z. Fan, J. Chen, B. Zhang, B. Liu, X. Zhong,Y. Kuang, High dispersion of γ-MnO2 on well-aligned carbon nanotube arrays and its application in supercapacitors. Diamond Relat. Mater., 2008. 17(11): p. 1943-1948.
53. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres,A.K. Geim, Fine structure constant defines visual transparency of graphene. Science, 2008. 320(5881): p. 1308.
54. C. Liu, S. Alwarappan, Z. Chen, X. Kong,C.Z. Li, Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosens. Bioelectron., 2010. 25(7): p. 1829-1833.
55. P.M. Hallam,C.E. Banks, Quantifying the electron transfer sites of graphene. Electrochem. Commun., 2011. 13(1): p. 8-11.
56. D.K. Kampouris,C.E. Banks, Exploring the physicoelectrochemical properties of graphene. Chem Commun (Camb), 2010. 46(47): p. 8986-8988.
57. S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj,C.N.R. Rao, Graphene-based electrochemical supercapacitors. Journal of Chemical Sciences, 2008. 120(1): p. 9-13.
58. Y. Chen, X. Zhang, P. Yu,Y. Ma, Electrophoretic deposition of graphene nanosheets on nickel foams for electrochemical capacitors. J. Power Sources, 2010. 195(9): p. 3031-3035.
59. S. Chen, J. Zhu, X. Wu, Q. Han,X. Wang, Graphene oxide--MnO2 nanocomposites for supercapacitors. ACS nano, 2010. 4(5): p. 2822-2830.
60. Y. Qian, S. Lu,F. Gao, Preparation of MnO2/graphene composite as electrode material for supercapacitors. Journal of Materials Science, 2011. 46(10): p. 3517-3522.
61. H. Huang,X. Wang, Graphene nanoplate-MnO2 composites for supercapacitors: a controllable oxidation approach. Nanoscale, 2011. 3(8): p. 3185-3191.
62. G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui,Z. Bao, Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett, 2011. 11(10): p. 4438-4442.
63. G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui,Z. Bao, Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett, 2011. 11(7): p. 2905-2911.
64. Z.P. Li, J.Q. Wang, X.H. Liu, S. Liu, J.F. Ou,S.R. Yang, Electrostatic layer-by-layer self-assembly multilayer films based on graphene and manganese dioxide sheets as novel electrode materials for supercapacitors. J. Mater. Chem., 2011. 21(10): p. 3397-3403.
65. K.S. Subrahmanyam, S.R.C. Vivekchand, A. Govindaraj,C.N.R. Rao, A study of graphenes prepared by different methods: characterization, properties and solubilization. J. Mater. Chem., 2008. 18(13): p. 1517.
66. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen,R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007. 45(7): p. 1558-1565.
67. L. Hu, W. Chen, X. Xie, N. Liu, Y. Yang, H. Wu, Y. Yao, M. Pasta, H.N. Alshareef,Y. Cui, Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. ACS nano, 2011. 5(11): p. 8904-8913.
68. Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li,L. Zhang, Progress of electrochemical capacitor electrode materials: A review. Int. J. Hydrogen Energy, 2009. 34(11): p. 4889-4899.
69. J.A. Darr,M. Poliakoff, New Directions in Inorganic and Metal-Organic Coordination Chemistry in Supercritical Fluids. Chem. Rev., 1999. 99(2): p. 495-542.
70. X. Zhao, B.M. Sanchez, P.J. Dobson,P.S. Grant, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale, 2011. 3(3): p. 839-855.
71. H. Zhang, G. Cao, Y. Yang,Z. Gu, Capacitive performance of an ultralong aligned carbon nanotube electrode in an ionic liquid at 60°C. Carbon, 2008. 46(1): p. 30-34.
72. W. Leitner, Supercritical Carbon Dioxide as a Green Reaction Medium for Catalysis. Acc. Chem. Res., 2002. 35(9): p. 746-756.
73. Y. Ma, J. Luo,S.L. Suib, Syntheses of Birnessites Using Alcohols as Reducing Reagents: Effects of Synthesis Parameters on the Formation of Birnessites. Chem. Mater., 1999. 11(8): p. 1972-1979.
74. T. Brousse, M. Toupin, R. Dugas, L. Athouel, O. Crosnier,D. Belanger, Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors. J. Electrochem. Soc., 2006. 153(12): p. A2171-A2180.
75. L.R.F. A. J. Bard, Electrochemical Method-Fundamentals and Applications1980, New York: John Wiley & Sons.
76. S.B. Ma, Y.H. Lee, K.Y. Ahn, C.M. Kim, K.H. Oh,K.B. Kim, Spontaneously deposited manganese oxide on acetylene black in an aqueous potassium permanganate solution. J. Electrochem. Soc., 2006. 153(1): p. C27-C32.
指導教授 張仍奎(Jeng-kuei Chang) 審核日期 2012-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明