參考文獻 |
1. R. Kotz,M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta, 2000. 45(15-16): p. 2483-2498.
2. J.P. Zheng, The Limitations of Energy Density for Electrochemical Capacitors. J. Electrochem. Soc., 1997. 144(6): p. 2026.
3. C. Arbizzani, M. Mastragostino,F. Soavi, New trends in electrochemical supercapacitors. J. Power Sources, 2001. 100(1–2): p. 164-170.
4. K. Jurewicz, Ammoxidation of active carbons for improvement of supercapacitor characteristics. Electrochim. Acta, 2003. 48(11): p. 1491-1498.
5. K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz,J. Machnikowski, Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochim. Acta, 2004. 49(4): p. 515-523.
6. C. Portet, P.L. Taberna, P. Simon,E. Flahaut, Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte. J. Power Sources, 2005. 139(1-2): p. 371-378.
7. M.M. Shaijumon, F.S. Ou, L. Ci,P.M. Ajayan, Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes. Chem Commun (Camb), 2008(20): p. 2373-2375.
8. C. Masarapu, H.F. Zeng, K.H. Hung,B. Wei, Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS nano, 2009. 3(8): p. 2199-2206.
9. S.W. Lee, B.S. Kim, S. Chen, Y. Shao-Horn,P.T. Hammond, Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J. Am. Chem. Soc., 2009. 131(2): p. 671-679.
10. L. Hu, M. Pasta, F.L. Mantia, L. Cui, S. Jeong, H.D. Deshazer, J.W. Choi, S.M. Han,Y. Cui, Stretchable, porous, and conductive energy textiles. Nano Lett, 2010. 10(2): p. 708-714.
11. A.G. Pandolfo,A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources, 2006. 157(1): p. 11-27.
12. X. Lu, H. Dou, B. Gao, C. Yuan, S. Yang, L. Hao, L. Shen,X. Zhang, A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors. Electrochim. Acta, 2011. 56(14): p. 5115-5121.
13. M. Pumera, Electrochemistry of graphene: new horizons for sensing and energy storage. Chem Rec, 2009. 9(4): p. 211-223.
14. M.D. Stoller, S. Park, Y. Zhu, J. An,R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett, 2008. 8(10): p. 3498-3502.
15. L.L. Zhang,X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem Soc Rev, 2009. 38(9): p. 2520-2531.
16. K. Naoi,P. Simon, J. Electrochem. Soc. Interface, 2008. 17: p. 34-37.
17. J.P. Zheng, Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors. J. Electrochem. Soc., 1995. 142(8): p. 2699-2702.
18. C.-C. Hu,W.-C. Chen, Effects of substrates on the capacitive performance of RuOx‧nH2O and activated carbon–RuOx electrodes for supercapacitors. Electrochim. Acta, 2004. 49(21): p. 3469-3477.
19. H.Y. Lee,J.B. Goodenough, Supercapacitor Behavior with KCl Electrolyte. J. Solid State Chem., 1999. 144(1): p. 220-223.
20. M. Toupin, T. Brousse,D. Belanger, Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. Chem. Mater., 2004. 16(16): p. 3184-3190.
21. S. Wen, J.-W. Lee, I.-H. Yeo, J. Park,S.-i. Mho, The role of cations of the electrolyte for the pseudocapacitive behavior of metal oxide electrodes, MnO2 and RuO2. Electrochim. Acta, 2004. 50(2-3): p. 849-855.
22. R.N. Reddy,R.G. Reddy, Sol–gel MnO2 as an electrode material for electrochemical capacitors. J. Power Sources, 2003. 124(1): p. 330-337.
23. R.N. Reddy,R.G. Reddy, Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material. J. Power Sources, 2004. 132(1-2): p. 315-320.
24. H.Y. Lee, V. Manivannan,J.B. Goodenough, Electrochemical capacitors with KCl electrolyte. Comptes Rendus de l’’Academie des Sciences - Series IIC - Chemistry, 1999. 2(11-13): p. 565-577.
25. O. Aschenbrenner, S. Kemper, N. Dahmen, K. Schaber,E. Dinjus, Solubility of β-diketonates, cyclopentadienyls, and cyclooctadiene complexes with various metals in supercritical carbon dioxide. J. Supercrit. Fluids, 2007. 41(2): p. 179-186.
26. X.-R. Ye, Y. Lin, C. Wang, M.H. Engelhard, Y. Wang,C.M. Wai, Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes. J. Mater. Chem., 2004. 14(5): p. 908-913.
27. E. Reverchon,R. Adami, Nanomaterials and supercritical fluids. The Journal of Supercritical Fluids, 2006. 37(1): p. 1-22.
28. L. Fu, Z. Liu, Y. Liu, B. Han, P. Hu, L. Cao,D. Zhu, Beaded Cobalt Oxide Nanoparticles along Carbon Nanotubes: Towards More Highly Integrated Electronic Devices. Adv. Mater., 2005. 17(2): p. 217-221.
29. S.E. Bozbag, L.C. Zhang, M. Aindow,C. Erkey, Carbon aerogel supported nickel nanoparticles and nanorods using supercritical deposition. The Journal of Supercritical Fluids, 2012. 66: p. 265-273.
30. J.J. Watkins,T.J. McCarthy, Polymer/Metal Nanocomposite Synthesis in Supercritical CO2. Chem. Mater., 1995. 7(11): p. 1991-1994.
31. Y. Zhang, D. Kang, C. Saquing, M. Aindow,C. Erkey, Supported Platinum Nanoparticles by Supercritical Deposition. Industrial & Engineering Chemistry Research, 2005. 44(11): p. 4161-4164.
32. S.E. Bozbag, N.S. Yasar, L.C. Zhang, M. Aindow,C. Erkey, Adsorption of Pt(cod)me2 onto organic aerogels from supercritical solutions for the synthesis of supported platinum nanoparticles. The Journal of Supercritical Fluids, 2011. 56(1): p. 105-113.
33. X.R. Ye, Y. Lin,C.M. Wai, Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide. Chem. Commun., 2003(5): p. 642-643.
34. Q. Xu, H. Fan, Y. Guo,Y. Cao, Preparation of titania/silica mesoporous composites with activated carbon template in supercritical carbon dioxide. Materials Science and Engineering: A, 2006. 435-436: p. 158-162.
35. J. Jiao, Q. Xu,L. Li, Porous TiO2/SiO2 composite prepared using PEG as template direction reagent with assistance of supercritical CO2. J. Colloid Interface Sci., 2007. 316(2): p. 596-603.
36. E. Kondoh,H. Kato, Characteristics of copper deposition in a supercritical CO2 fluid. Microelectron. Eng., 2002. 64(1-4): p. 495-499.
37. E. Kondoh, Deposition of Cu and Ru Thin Films in Deep Nanotrenches/Holes Using Supercritical Carbon Dioxide. Japanese Journal of Applied Physics, 2004. 43(6B): p. 3928-3933.
38. X.R. Ye, Y. Lin, C. Wang,C.M. Wai, Supercritical Fluid Fabrication of Metal Nanowires and Nanorods Templated by Multiwalled Carbon Nanotubes. Adv. Mater., 2003. 15(4): p. 316-319.
39. T. Gougousi, D. Barua, E.D. Young,G.N. Parsons, Metal oxide thin films deposited from metal organic precursors in supercritical CO2 solutions. Chem. Mater., 2005. 17(20): p. 5093-5100.
40. G. An, N. Na, X. Zhang, Z. Miao, S. Miao, K. Ding,Z. Liu, SnO2/carbon nanotube nanocomposites synthesized in supercritical fluids: highly efficient materials for use as a chemical sensor and as the anode of a lithium-ion battery. Nanotechnology, 2007. 18(43): p. 435707.
41. S.R. Sivakkumar, J.M. Ko, D.Y. Kim, B.C. Kim,G.G. Wallace, Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors. Electrochim. Acta, 2007. 52(25): p. 7377-7385.
42. A.E. Fischer, K.A. Pettigrew, D.R. Rolison, R.M. Stroud,J.W. Long, Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Lett, 2007. 7(2): p. 281-286.
43. K. Rajendra Prasad,N. Miura, Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochem. Commun., 2004. 6(10): p. 1004-1008.
44. X. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li,J. Shi, MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors. The journal of physical chemistry. B, 2006. 110(12): p. 6015-6019.
45. X. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li,J. Shi, A structure of MnO2 embedded in CMK-3 framework developed by a redox method. Microporous Mesoporous Mater., 2006. 91(1-3): p. 120-127.
46. G.R. Li, Z.P. Feng, Y.N. Ou, D. Wu, R. Fu,Y.X. Tong, Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors. Langmuir : the ACS journal of surfaces and colloids, 2010. 26(4): p. 2209-2213.
47. V. Subramanian, H. Zhu,B. Wei, Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. Electrochem. Commun., 2006. 8(5): p. 827-832.
48. Y. Hou, Y. Cheng, T. Hobson,J. Liu, Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett, 2010. 10(7): p. 2727-2733.
49. R. Liu,S.B. Lee, MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J. Am. Chem. Soc., 2008. 130(10): p. 2942-2943.
50. F.-J. Liu, Electrodeposition of manganese dioxide in three-dimensional poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonic acid)–polyaniline for supercapacitor. J. Power Sources, 2008. 182(1): p. 383-388.
51. L.-J. Sun,X.-X. Liu, Electrodepositions and capacitive properties of hybrid films of polyaniline and manganese dioxide with fibrous morphologies. Eur. Polym. J., 2008. 44(1): p. 219-224.
52. Z. Fan, J. Chen, B. Zhang, B. Liu, X. Zhong,Y. Kuang, High dispersion of γ-MnO2 on well-aligned carbon nanotube arrays and its application in supercapacitors. Diamond Relat. Mater., 2008. 17(11): p. 1943-1948.
53. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres,A.K. Geim, Fine structure constant defines visual transparency of graphene. Science, 2008. 320(5881): p. 1308.
54. C. Liu, S. Alwarappan, Z. Chen, X. Kong,C.Z. Li, Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosens. Bioelectron., 2010. 25(7): p. 1829-1833.
55. P.M. Hallam,C.E. Banks, Quantifying the electron transfer sites of graphene. Electrochem. Commun., 2011. 13(1): p. 8-11.
56. D.K. Kampouris,C.E. Banks, Exploring the physicoelectrochemical properties of graphene. Chem Commun (Camb), 2010. 46(47): p. 8986-8988.
57. S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj,C.N.R. Rao, Graphene-based electrochemical supercapacitors. Journal of Chemical Sciences, 2008. 120(1): p. 9-13.
58. Y. Chen, X. Zhang, P. Yu,Y. Ma, Electrophoretic deposition of graphene nanosheets on nickel foams for electrochemical capacitors. J. Power Sources, 2010. 195(9): p. 3031-3035.
59. S. Chen, J. Zhu, X. Wu, Q. Han,X. Wang, Graphene oxide--MnO2 nanocomposites for supercapacitors. ACS nano, 2010. 4(5): p. 2822-2830.
60. Y. Qian, S. Lu,F. Gao, Preparation of MnO2/graphene composite as electrode material for supercapacitors. Journal of Materials Science, 2011. 46(10): p. 3517-3522.
61. H. Huang,X. Wang, Graphene nanoplate-MnO2 composites for supercapacitors: a controllable oxidation approach. Nanoscale, 2011. 3(8): p. 3185-3191.
62. G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui,Z. Bao, Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett, 2011. 11(10): p. 4438-4442.
63. G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui,Z. Bao, Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett, 2011. 11(7): p. 2905-2911.
64. Z.P. Li, J.Q. Wang, X.H. Liu, S. Liu, J.F. Ou,S.R. Yang, Electrostatic layer-by-layer self-assembly multilayer films based on graphene and manganese dioxide sheets as novel electrode materials for supercapacitors. J. Mater. Chem., 2011. 21(10): p. 3397-3403.
65. K.S. Subrahmanyam, S.R.C. Vivekchand, A. Govindaraj,C.N.R. Rao, A study of graphenes prepared by different methods: characterization, properties and solubilization. J. Mater. Chem., 2008. 18(13): p. 1517.
66. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen,R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007. 45(7): p. 1558-1565.
67. L. Hu, W. Chen, X. Xie, N. Liu, Y. Yang, H. Wu, Y. Yao, M. Pasta, H.N. Alshareef,Y. Cui, Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. ACS nano, 2011. 5(11): p. 8904-8913.
68. Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li,L. Zhang, Progress of electrochemical capacitor electrode materials: A review. Int. J. Hydrogen Energy, 2009. 34(11): p. 4889-4899.
69. J.A. Darr,M. Poliakoff, New Directions in Inorganic and Metal-Organic Coordination Chemistry in Supercritical Fluids. Chem. Rev., 1999. 99(2): p. 495-542.
70. X. Zhao, B.M. Sanchez, P.J. Dobson,P.S. Grant, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale, 2011. 3(3): p. 839-855.
71. H. Zhang, G. Cao, Y. Yang,Z. Gu, Capacitive performance of an ultralong aligned carbon nanotube electrode in an ionic liquid at 60°C. Carbon, 2008. 46(1): p. 30-34.
72. W. Leitner, Supercritical Carbon Dioxide as a Green Reaction Medium for Catalysis. Acc. Chem. Res., 2002. 35(9): p. 746-756.
73. Y. Ma, J. Luo,S.L. Suib, Syntheses of Birnessites Using Alcohols as Reducing Reagents: Effects of Synthesis Parameters on the Formation of Birnessites. Chem. Mater., 1999. 11(8): p. 1972-1979.
74. T. Brousse, M. Toupin, R. Dugas, L. Athouel, O. Crosnier,D. Belanger, Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors. J. Electrochem. Soc., 2006. 153(12): p. A2171-A2180.
75. L.R.F. A. J. Bard, Electrochemical Method-Fundamentals and Applications1980, New York: John Wiley & Sons.
76. S.B. Ma, Y.H. Lee, K.Y. Ahn, C.M. Kim, K.H. Oh,K.B. Kim, Spontaneously deposited manganese oxide on acetylene black in an aqueous potassium permanganate solution. J. Electrochem. Soc., 2006. 153(1): p. C27-C32.
|