博碩士論文 993203041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.227.81.161
姓名 宋炳儒(Bing-ru Song)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 紫外光輔助準晶矽薄膜在多孔層上之製作與研究
(The study of the quasi-crystal silicon thin film with UV assisted in the porous silicon layer.)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著時代的發展,半導體製程技術依循著摩耳定律(Moore,s Law)發展,目前進入奈米製程,開始28奈米和22奈米節點之量產。絕緣層矽晶(Silicon on insulator, SOI)材料結構具備可以解決於傳統矽塊材(Bulk Silicon)晶圓材料上製作尺寸越來越小之元件所帶來的諸多問題,如:寄生效應、閉鎖效應、軟錯效應、基材漏電流與過熱等問題。Smart-CutR製程為近來最常用之技術,利用高劑量氫離子佈植於矽晶圓內,再經晶圓鍵合製程與高溫退火處理,使氫離子聚集產生剝離以達到薄膜轉移之目的。但離子佈植機設備高昂,且高強度離子束易損傷晶圓,佈植深度難以超過一微米,故改以利用紫外光輔助電化學蝕刻的方式製作出厚層的薄膜轉移材料。
本實驗研究之目的為使用紫外光輔助電化學蝕刻的方式,依照不同蝕刻參數,蝕刻P型重掺雜矽晶圓,蝕刻出雙層多孔矽結構,再利用Argon高溫退火處理,製作出具深埋破裂層與微米厚的多孔回復晶矽薄膜,其薄膜為準晶矽結構。
摘要(英) The semiconductor manufacturing technology follows the Moor’s law in the past. The development of the semiconductor industry has entered the nanoscale process, such as the 28 nm and the 22 nm. Silicon on insulator, SOI, which has the material structure can solve the problem of the devices been manufactured to be smaller with the traditional bulk silicon wafer, such as the parasitic capacitance, the latch-up, short channel effects, the substrate leakage current and overheating, and so on. Smart-CutR process is a common technology for manufacturing the SOI material. By implanting the high doses of hydrogen ion into the silicon wafer, wafer bonding process and annealing process, the hydrogen ions will accumulate and thus create cracks to finish thin film transfer. The ions implantation equipment is easy to cause damage because of high ion implanting doses into silicon wafer, and which is expensive. It’s difficult to obtain over 1 micron of implanting depth. Thus, the UV-assisted electrochemical etching method can achieve thicker film transfer and the price is cheaper.
The purpose of this study is to use the UV-assisted electrochemical etching method, heavily doped P-type silicon wafer was electrochemically etched based on different etching parameters which forms a porous silicon (PS) bilayer. Then the PS wafer was annealed at the high temperature to manufacture the PS bilayer with a buried separation and recrystallization layer with a few micros thickness, which was the structure of the quasi-crystalline silicon.
關鍵字(中) ★ 多孔矽
★ 準晶系
★ 薄膜
★ 紫外光
關鍵字(英) ★ UV
★ thin film
★ porous silicon
★ quasi-crystalline
論文目次 摘要………………………………………………………………………i
Abstract………………………………………………………………..…ii
致謝……………………………………………………………...………iii
目錄……………………………………………………………………iv
圖目錄……………………………………………………………..…….vi
表目錄……………………………………………………………….…xiii
第一章 緒論……………………………………………………………..1
1.1 研究背景…………………….……………………………….…1
1.2 研究目的…………………….………………………………….5
第二章 原理與文獻回顧………………………………………………10
2.1 形成多孔矽之基礎理論……….……………………………...10
2.2 多孔矽製作技術…………………..……………………….......11
2.2.1 多孔矽電化學蝕刻中的電流-電壓(I-V)特性…….13
2.2.2 多孔矽溶解的化學反應…………………………...…14
2.2.3 光照輔助多孔矽蝕刻………………………………...16
2.2.4 孔矽形成機制…………………………..…………...17
2.2.4.1 貝爾模型(The Beale Model)………………17
2.2.4.2 量子模型(The Quantum Model)………..………18
2.2.4.3 擴散限制模型(The Diffusion-Limited Model).18
2.2.5 多孔矽的橫向蝕刻…………..………….……………19
2.2.6 多孔矽的高溫退火.…………………….……………20
第三章 實驗準備與步驟…..…………………..……………..…..……28
3.1 實驗試片與器材準備…..………………………...………...…29
3.2 實驗晶片清潔…..…….…………….....………………………30
3.3 電化學蝕刻設備…..…………………..........…………………32
3.4 高溫退火設備…..…………………..……...………….………34
3.5 分析儀器介紹…………………..…..……………..…………..36
3.5.1 場發射掃描式電子顯微鏡(FE-SEM)..……………36
3.5.2 場發射穿透式電子顯微鏡(FE-TEM)..……..………37
第四章 結果與討論…..……..……..……..……..…………..……..…43
4.1 不同蝕刻時間參數電化學蝕刻雙層多孔矽結果與討論…....44
4.2 雙重不同定電流參數電化學蝕刻雙層多孔矽結果與討論…46
4.3 雙層多孔矽高溫退火結構變化結果與討論……….….…..…49
第五章 結論與未來展望…..……..……..……..……..………..…..…83
5.1 結論…..……..……..……..……..……………..……..……..…83
5.2 未來展望…..……..……..……..……..……….……...……..…84
參考文獻..……..……....……..……....……..……....……..………..…..85

圖目錄
圖 1.1 漏電流示意圖……………………………………………….….6
圖 1.2 寄生電容示意圖………………………………………….…….6
圖 1.3 閉鎖效應示意圖…………………………………………….….6
圖 1.4 軟錯效應示意圖………………………………………….…….7
圖 1.5 絕緣層矽晶(SOI)基本結構圖……………………………….7
圖 1.6 SIMOX 製程簡圖…………………………………………...….7
圖 1.7 BESOI 製程簡圖……………………………………………….8
圖 1.8 Smart-CutR 製程簡圖…………………………….…………….9
圖 1.9 ELTRANR 製程簡圖………………………………..………….9
圖 2.1 典型(a)P型矽與(b)N型矽之電壓-電流曲線圖………….……21
圖 2.2 陽極電位曲線圖………………………………………………21
圖 2.3 Lehmann所提出之多孔矽化學反應示意圖…………………22
圖 2.4 紫外光輔助蝕刻表面和側面SEM圖 【(A) 20 min, (B) 40 min, (C) 60 min】…………………………………………………………23
圖 2.5 貝爾模型………………………………………………………23
圖 2.6 擴散限制模型…………………………………………………24
圖 2.7 橫向蝕刻的裂縫生長示意圖…………………………………24
圖 2.8 多孔矽高溫退火孔隙回復過程示意圖………………………25
圖 3.1 實驗流程圖……………………………………………………39
圖 3.2 實驗用試片……………………………………………………40
圖 3.3 電化學蝕刻之反應蝕刻槽系統………………………………41
圖 3.4 蝕刻槽結構圖…………………………………………………41
圖 3.5 高溫退火設備…………………………………………………42
圖 3.6 JSM-7401F分析儀器…………………………………………42
圖 3.7 JEM-2100F分析儀器………………………….………………42
圖 4.1 雙層多孔矽(300/600 mA)(5/5 min)之SEM側視圖…………51
圖 4.2 雙層多孔矽(300/600 mA)(7.5/7.5 min)之SEM側視圖….…51
圖 4.3 雙層多孔矽(300/600 mA)(10/10 min)之SEM側視圖…...…52
圖 4.4 雙層多孔矽(300/600 mA)(15/15 min)之SEM側視圖…...…52
圖 4.5 雙層多孔矽(300/600 mA)(5/5 min)之SEM上層側視圖...…53
圖 4.6 雙層多孔矽(300/600 mA)(7.5/7.5 min)之SEM上層側視圖…………………………………………………………………...53
圖 4.7 雙層多孔矽(300/600 mA)(10/10 min)之SEM上層側視圖…………………………………………………………………...54
圖 4.8 雙層多孔矽(300/600 mA)(15/15 min)之SEM上層側視圖………………………………………………………………...…54
圖 4.9 雙層多孔矽(300/600 mA)(5/5 min)之SEM下層側視圖……………………………………………………………...……55
圖 4.10 雙層多孔矽(300/600 mA)(7.5/7.5 min)之SEM下層側視圖……………………………………………………………...……55
圖 4.11 雙層多孔矽(300/600 mA)(10/10 min)之SEM下層側視圖……………………………………………………………...……56
圖 4.12 雙層多孔矽(300/600 mA)(15/15 min)之SEM下層側視圖…………………………………………………………………...56
圖 4.13 雙層多孔矽(250/600 mA)之SEM側視圖……….……..……57
圖 4.14 雙層多孔矽(250/650 mA)之SEM側視圖……….…..………57
圖 4.15 雙層多孔矽(250/675 mA)之SEM側視圖……………...……58
圖 4.16 雙層多孔矽(250/600 mA)之SEM上層側視圖………...……58
圖 4.17 雙層多孔矽(250/650 mA)之SEM上層側視圖…….…..……59
圖 4.18 雙層多孔矽(250/675 mA)之SEM上層側視圖……….…..…59
圖 4.19 雙層多孔矽(250/600 mA)之SEM下層側視圖………...……60
圖 4.20 雙層多孔矽(250/650 mA)之SEM下層側視圖……...………60
圖 4.21 雙層多孔矽(250/675 mA)之SEM下層側視圖………...……61
圖 4.22 雙層多孔矽(300/600 mA)之SEM側視圖…………...………61
圖 4.23 雙層多孔矽(300/650 mA)之SEM側視圖…………...………62
圖 4.24 雙層多孔矽(300/675 mA)之SEM側視圖…………...………62
圖 4.25 雙層多孔矽(300/600 mA)之SEM上層側視圖………...……63
圖 4.26 雙層多孔矽(300/650 mA)之SEM上層側視圖…………...…63
圖 4.27 雙層多孔矽(300/675 mA)之SEM上層側視圖…...…………64
圖 4.28 雙層多孔矽(300/600 mA)之SEM下層側視圖…………...…64
圖 4.29 雙層多孔矽(300/650 mA)之SEM下層側視圖……...………65
圖 4.30 雙層多孔矽(300/675 mA)之SEM下層側視圖…………...…65
圖 4.31 雙層多孔矽(250/600 mA)退火1.5 hr之SEM側視圖…….…66
圖 4.32 雙層多孔矽(250/600 mA)退火1.5 hr之SEM側視圖….……66
圖 4.33 雙層多孔矽(250/600 mA)退火1.5 hr之SEM側視圖(上層)……………………………………………………………….…67
圖 4.34 雙層多孔矽(250/600 mA)退火1.5 hr之SEM側視圖(下層)………………………………………………….………………67
圖 4.35 雙層多孔矽(300/600 mA)退火1.5 hr之SEM側視圖(上層)………………………………………………….………………68
圖 4.36 雙層多孔矽(300/600 mA)退火1.5 hr之SEM側視圖(下層)………………………………………………….………………68
圖 4.37 雙層多孔矽(250/600 mA)退火3 hr之SEM側視圖…………69
圖 4.38 雙層多孔矽(300/600 mA)退火3 hr之SEM側視圖…………69
圖 4.39 雙層多孔矽(250/600 mA)退火3 hr之SEM側視圖(上層)…………………………………………………….……………70
圖 4.40 雙層多孔矽(250/600 mA)退火3 hr之SEM側視圖(下層)…………………………………………………….……………70
圖 4.41 雙層多孔矽(300/600 mA)退火3 hr之SEM側視圖(上層)…………………………………………………….……………71
圖 4.42 雙層多孔矽(300/600 mA)退火3 hr之SEM側視圖(下層)…………………………………………………….……………71
圖 4.43 雙層多孔矽(250/600 mA)退火1.5 hr之TEM側視圖(宏觀)…………………………………………………….……………72
圖 4.44 雙層多孔矽(250/600 mA)退火1.5 hr之TEM側視圖(表面)…………………………………………………….……………72
圖 4.45 雙層多孔矽(250/600 mA)退火3 hr之TEM側視圖(宏觀)…………………………………………………….……………73
圖 4.46 雙層多孔矽(250/600 mA)退火3 hr之TEM側視圖(表面)…………………………………………………….……………73
圖 4.47 雙層多孔矽(300/600 mA)退火1.5 hr之TEM側視圖(宏觀)…………………………………………………….……………74
圖 4.48 雙層多孔矽(300/600 mA)退火1.5 hr之TEM側視圖(表面)…………………………………………………….……………74
圖 4.49 雙層多孔矽(300/600 mA)退火3 hr之TEM側視圖(宏觀)…………………………………………………….……………75
圖 4.50 雙層多孔矽(300/600 mA)退火3 hr之TEM側視圖(表面)…………………………………………………….……………75
圖 4.51 雙層多孔矽(250/600 mA)退火1.5 hr之TEM側視圖(內層)…………………………………………………….……………76
圖 4.52 雙層多孔矽(250/600)退火3 hr之TEM側視圖(內層)…………………………………………………….……………76
圖 4.53 雙層多孔矽(300/600 mA)退火1.5 hr之TEM側視圖(內層)…………………………………………………….……………77
圖 4.54 雙層多孔矽(300/600 mA)退火3 hr之TEM側視圖(內層)(A)………………….……………………………….……………77
圖 4.55 雙層多孔矽(300/600 mA)退火3 hr之TEM側視圖(內層)(B)………………………………………………….………..……78
圖 4.56 雙層多孔矽(300/600 mA)退火3 hr之TEM側視圖(內層)(C)………………………………………………….………...…78
圖 4.57 雙層多孔矽(250/600 mA)退火1.5 hr之晶格繞射圖……..…79
圖 4.58 雙層多孔矽(250/600 mA)退火3 hr之晶格繞射圖………….79
圖 4.59 雙層多孔矽(300/600 mA)退火1.5 hr之晶格繞射圖……..…80
圖 4.60 雙層多孔矽(300/600 mA)退火3 hr之晶格繞射圖(表面)….80
圖 4.61 雙層多孔矽(300/600 mA)退火3 hr之晶格繞射圖(內層).…81
圖 4.62 雙層多孔矽(300mA/700mA)Ar高溫退火之X光繞射圖…81

表目錄
表 2.1 蝕刻技術之比較…………………………………...………….26
表 2.2 p型及n型單晶矽在氫氟酸電解液中的電化學特性……...…26
表 2.3 陽極反應參數與多孔矽形成之關係…………………………27
表 4.1 實驗蝕刻時間參數表…………………………………………82
表 4.2 實驗蝕刻定電流參數表………………………………………82
表 4.3 實驗退火時間參數表…………………………………………82
參考文獻 [1] Scott E. Thompson and Srivatsan Parthasarathy, “Moore’’s law: the future of Si microelectronics”, Science, Vol. 9, Issue 6, pp.20-25, 2006.
[2] G. K. Celler and S. Cristoloveanu, “Frontiers of Silicon-on- Insulator” , Journal of Applied Physics, Vol. 93, Issue 9, pp. 4955-4978, 2003.
[3] 莊達人,VLSI 製造技術,五版,高立圖書有限公司,臺北縣,2004.
[4] 陳威良,「電漿離子佈植製作SOI及佈植缺陷之研究」,國立清華大學,碩士論文,2003.
[5] J. B. Kuo and K.-W. Su, CMOS VLSI Engineering:Silicon-on-Insulator (SOI), Kluwer Academic Publishers, Boston, 1998.
[6] J.-P. Colinge, “Silicon-on-Insulator Technology: Materials to VLSI, 3rd Edition”, Springer Science+Business Media, Inc., New York, 2004.
[7] J. B. Lasky, et al., “Silicon-on-Insulator(SOI)by Bonding and Etch-Back”, Electron Devices Meeting, 1985 International, Vol. 31, pp.684-687, 1985.
[8] Q, -Y. Tong and U. Gossel, “Semiconductor Wafer Bonding:Science and Technology”, John Wiley, New York, 1999.
[9] M. Bruel, “Silicon on insulator material technology”. Electronics Letters, Vol. 31, Issue 14, pp. 1201-1202, Jul 1995.
[10] M. Bruel, “Process for the production of thin semiconductor material films”, US Patent 5,374,56, Commissariat A l’’Energie Atomique, 1992.
[11] T.-H. Lee, “Semiconductor thin film transfer by wafer bonding and adcaced ion implantation layer splitting technologies”, Duke University, Ph.D. Dissertation, 1998.
[12] NC. Bartelt et al., “Ostwald ripening of two-dimensional islands on Si (001)”, Physical Review, B., Vol.54, pp.741-751, 1996 .
[13] T Yonehara et al., “ELTRANR;SOI Wafer Technology ELTRAN”, JSAP International, No.4, pp10-16, 2001.
[14] A. Uhir, “Electrolytic shapping of germanium and silicon”, Bell System Tech. J., Vol. 35, pp. 333, 1956.
[15] 3T. Osaka, K. Ogasawara , and S. Nakahara, “Classification of the pore structure of n-type silicon and its microstructure”, J. Electrochem. Soc. 144, 3226, 1997.
[16] C. L. Clement, A. Lagoubi, and M. Tomkiewicz,”Morphology of porous n-type silicon obtained by photoelectrochemical etching” , J. Electrochem. Soc. 141, 958,1994.
[17] C. Levy-Clement, A. Lagoubi, R. Tenne, and M. Neumann-Spallart, “Photoelectrochemical etching of silicon”, Electrochim. Acta 37(5), 877, 1992.
[18] A. A. Yaron, S. Bastide, J. L. Maurice, and C. L. Clement, “Morphology of porous n-type silicon obtained by photoelectrochemical etching II”, J. Lumin. 57, 67, 1993.
[19] X.G. Zhang, S.D. Collins, R.L. Smith, “Porous Silicon Formation and Electropolishing of Silicon by Anodic Polarization in HF Solution”, J. Electrochem. Soc., Vol. 136, Issue 5, pp. 1561-1565, 1989.
[20] X.G. Zhang, “Mechanism of Pore Formation on n‐Type Silicon”, J.electrochem. Soc., Vol. 138, Issue 12, pp. 3750-3756, 1991.
[21] V. Lehmann, “The Physics of Macropore Formation in Low Doped n-Type Silicon”, J.electrochem. Soc., Vol. 140, pp. 2836, 1993.
[22] C. Pickering, M.J. Beale, D.J. Robbins, P.J. Pearson, and R. Greef, “Optical studies of the structure of porous silicon films formed in p-type degenerate and non-degenerate silicon”, J. Phys. C: Solid state Phys., Vol. 17, pp. 5535, 1984.
[23] M.J. Beale, J.D. Benjamin, M.J. Uren, N.G. Uren, N.G. Chew and A.G. Cullis, “An experimental and theoretical study of the formation and microstructure of porous silicon”, J. Cryst. Growth, Vol.73, pp. 622, 1985.
[24] M.J. Beale, J.D. Benjamin, M.J. Uren, N.G. Uren, N.G. Chew, and A.G. Cullis, “Microstructure and formation mechanism of porous silicon”, Appl. Phys. Lett., Vol. 46, pp. 86, 1985.
[25] I. M. Young, M. I. Beale and J.D. Benjamin, “X‐ray double crystal diffraction study of porous silicon”, Appl. Phys. Lett., Vol.46, pp. 1133, 1985.
[26] R.L. Smith, S.D. Collins, “Porous silicon formation mechanism”, J. Appl. Phys., Vol. 71, R1, 1992.
[27] V. Lehmann, H. Foll, “Formation mechanism and properties of electrochemically etched trenches in n-type silicon”, J. Electrochem. Soc., Vol. 137, pp. 653, 1990.
[28] V. Lehmann, W. Honlein, R. Reisinger, A. Spitzer, H. Wendt, and J. Willer, “A novel capacitor technology based on porous silicon” Thin Solid Films, Vol. 276, pp. 138, 1996.
[29] V. Lehmann, U. Gosele, “Porous silicon formation: A quantum wire effect”, Appl. Phys. Lett., Vol. 58, pp. 865, 1991.
[30] V. Lehmann, “Porous silicon-a new material for MEMS”, Proc. MEMS’96, pp. 1-6 , 1996.
[31] Nurul Izni Rusli, Mastura Shafinaz Zainal Abidin, Budi Astuti, Nihad K. Ali, Abdul Manaf Hashim,“Effects of Etching Time on the Morphology of Porous Silicon Structure Formed by Potential-assisted Electrochemical Etching”, IEEE, MALAYSIA, 2012
[32] A.J. Read, R.J. Needs, K.J. Naish, L.T. Canham, P.D.J. Calcott, and A. Qteish, “First-principles calculations of the electronic properties of silicon quantum wires”, Phys, Rev. Lett., Vol. 69, pp. 1232, 1992.
[33] G. D. Sanders and Y. C. Chang, “Theory of optical properties of quantum wires in porous silicon”, Phys. Rev. B, Vol. 45, pp. 856, 1992.
[34] V. Lehmann, U. Gosele, “Porous silicon formation: A quantum wire effect”, Appl. Phys. Lett., Vol. 58, pp. 856, 1991.
[35] R.L. Smith, S.F. Chuang, and S.D. Collins, “A theoretical model of the formation morphologies of porous silicon”, J. Electron. Mater., Vol.17, pp. 533, 1988.
[36] R.L. Smith and S.D. Collins, “Generalized model for the diffusion-limited aggregation and Eden models of cluster growth”, Phys. Rev. A, Vol. 39, pp. 5409, 1989.
[37] R.L. Smith and S.D. Collins, “Porous silicon formation mechanisms” J. Appl. Phys., Vol. 71, R1, 1992.
[38] T.A. Witten and L.M. Sander, “Diffusion-limited aggregation” Phys. Rev. B, Vol. 27, pp. 5686, 1983
[39] C. S. Solanki et al. “New approach for the formation and separation of a thin porous silicon layer”, phys. Stat. sol. (a) , Vol.182, pp. 97, 2000.
[40] C. S. Solanki, R. R. Bilyalov, J. Poortmans, J.-P. Celis, J. Nijs., “Effect of the composition of electrolyte on separation of porous silicon film by electrochemical etching”, phys. Stat. sol. (a), Vol. 182, pp. 97, 2000.
[41] C. S. Solanki et al. “New approach for the formation and separation of a thin porous silicon layer”, phys. Stat. sol. (a) , Vol.182, pp. 97, 2000
[42] C. S. Solanki, R. R. Bilyalov, J. Poortmans, J.-P. Celis, J. Nijs., “Effect of the composition of electrolyte on separation of porous silicon film by electrochemical etching”, phys. Stat. sol. (a), Vol. 182, pp. 97, 2000.
[43] V. Labunov, V. Bondarenko, I. Glinenko, A. Dorofeev and L. Tabulina ,“Heat treatment effect on porous silicon”, Thin Solid Films, Vol. 137, pp.123-134, 1986.
[44] G. Muller, M. Nerding, N. Ott, H. P. Strunk, and R. Brendel,“Sintering of porous silicon”, phys. stat. sol. (a), Vol. 197, pp. 83-87, 2003.
[45] Reza Abbaschian, Robert E., Reed-Hill, Physical Metallurgy Principles, 3rd Edition, PWS Kent Publishing Company, Boston, 1992.
[46] Randall M. German, Sintering Theory and Practice, John Wiley & Sons Inc, New York, 1996.
[47] N. Ott, M. Nerding, G. Mu‥ ller and R. Brendel, H. P. Strunk, “Evolution of the microstructure during annealing of porous silicon multilayers”, J. Appl. Phys., Vol. 95, pp. 497-503, 2004.
指導教授 李天錫(Tien-hsi Lee) 審核日期 2012-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明