博碩士論文 963403014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.133.145.17
姓名 陳廷詔(Ting-Chao Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 即時影像導引連續式微電鍍系統之開發研究
(The research and development of a real-time image guided micro electroplating system)
相關論文
★ 應用於車身號碼打刻機之號碼辨識★ 複合式掌紋識別系統
★ 圓形偵測在OLED Panel 檢測上的應用★ MLCC薄膜厚度即時線上影像檢測技術之研發
★ 全自動微鑽針影像檢測系統之研究★ 應用類神經網路預測COG製程對於中小尺寸TFT-LCD產生之應力狀態
★ 應用機器視覺系統檢測高滲透壓刀輪切割 TFT-LCD 玻璃後斷面之研究★ 低成本輕量化機械手臂之研究
★ 應用在同軸電纜加工之雷射光斑導引機構設計與分析★ 表面電漿波共振-非旋轉方式的新機構設計理論
★ 網路協同式機械設計系統研發★ 軟膠囊自動辨識系統
★ 心電訊號之擷取與分析★ 盲人圖樣感知輔助裝置之研發設計
★ 非旋轉式表面電漿共振儀之改良與實現★ 可攜式無線心電訊號擷取器之設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究是設計一套即時影像導引連續式微電鍍系統,主要是利用影像處理,辨識出兩極間距後,連續控制微步進馬達移動陰極來保持與微陽極之間的固定距離,來進行微電鍍製程,進而達到連續式微電鍍的目的。系統主要是利用影像辨識回饋來達到保持固定間距的目的,所以良好的影像品質是必要的。因此,針對改善影像品質及精度做深入的探討。
除此之外,並探討連續式微電鍍製程中,銅微柱之沉積速率及沉積尺寸與系統設定參數之關係。並利用系統鑑別推導出系統特性參數,及利用曲線嵌合的技術求出系統的轉移函數,進而模擬出銅微柱長度與直徑沉積的近似曲線。更利用Matlab中的Fuzzy Toolbox來建立分析模型,並利用模糊經驗法則建出模糊規則表,再透過解模糊化後,推論出不同銅微柱沉積之形貌尺寸在連續式微電鍍製程中所需設定參數。並探討所建模型與實際製程中銅微柱沉積之形貌尺寸的誤差。其中微電鍍製程會因為兩極間間距的不同與電壓不同而產生不同的沉積速率,可利用不同可變參數的組合變化去控制,以達到精準沉積所需之銅微柱形貌尺寸及預估銅微柱的沉積速率,並探討不同參數對銅微柱之影響。
摘要(英) This research is to design the continuous real-time image guided micro electroplating system with the image processing to distinguish the gap distance between the copper column tip and the anode. With the micro stepper motor, the system keeps the constant distance between the micro-anode and the copper specimen to achieve the continuous electroplating target. Mainly, the system keeps the constant gap distance by image recognition processing. Therefore, capturing clear and good quality images is necessary. Thus, this research will further explore more on how to improve the image qualities.
In addition, this research will discuss the relationship between the copper micro-column deposition rate and the setup parameters of the system in the continuous micro electroplating process. To further simulate the approximate curve of the copper micro-column length and the deposition diameter, the system uses the system identification to drive the system parameters and the curve fitting to find out the system transfer function.
Furthermore, this research applies the Fuzzy Toolbox of Matlab to setup the model and analyze the fuzzy rule table by using the fuzzy experience rule. Then using the defuzzification infers the required parameters of the different copper micro-column in continuous micro electroplating process and discusses the inaccuracy of different copper micro-column morphologies.
Because of the varied gap distance between the two poles and the supplied voltages, the micro electroplating process results the deposition rates differently.
Therefore, by examining and analyzing the effects of variable parameters, the system may be able to deposit the required copper micro-column and to estimate the deposition rate.
關鍵字(中) ★ 影像處理
★ 微電鍍
★ 模糊
★ 曲線嵌合
★ 系統鑑別
★ 即時影像
關鍵字(英) ★ image processing
★ system identification
★ curve fitting
★ fuzzy
★ micro electroplating
★ real-time image
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xi
符號表 xii
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 4
1-3 論文貢獻 7
1-4 論文架構 8
第二章 即時影像導引連續式微電鍍系統架構 10
2-1 硬體系統架構 11
2-1-1 影像擷取系統 12
2-1-2 微電鍍系統 14
2-1-3 光源系統 21
2-1-4 控制系統 23
2-2 軟體系統設計 24
2-2-1 人機介面 24
2-2-2 影像辨識系統 27
第三章 影像量測精度 41
3-1 光源及入射方向 42
3-1-1 光源顏色選擇 42
3-1-2 光源入射方向選擇 51
3-2 氣泡之檢測方法 54
3-3 氣泡檢測方法之比較 58
3-4 間歇式與連續式微電鍍系統之比較 62
第四章 銅微柱沉積速率之分析及形貌尺寸控制參數選擇方法 65
4-1 銅微柱沉積速率之分析 66
4-1-1 銅微柱之沉積速率 66
4-1-2 銅微柱長度之沉積速率比較 68
4-1-3 銅微柱直徑與電場之關係 70
4-2 系統鑑別 71
4-3 模糊邏輯控制器 74
4-3-1 模糊化介面 75
4-3-2 決策邏輯與知識庫 77
4-3-3 解模糊化介面 78
4-3-4 模糊推論機 79
4-3-5 輸出歸屬函數 80
4-3-6 解模糊範例 82
第五章 結論與未來展望 85
5-1 結論 85
5-2 未來展望 87
參考文獻 88
參考文獻 [1]R.C. Gonzalez and R.E. Woods, “Digital Image Processing ”, Prentice-Hall, New Jersey, (2002).
[2]R.C. Gonzalez, R.E. Woods and S.L. Eddins, “Digital Image Processing using MATLAB ”, Prentice-Hall, New Jersey, (2003).
[3]R.C. Gonzalez, R.E. Woods and S.L. Eddins, “Digital Image Processing using MATLAB ”, 2nd edition, Gatesmark Publishing, United States, (2009).
[4]L.T. Romankiew, “Electrodeposition technology, theory and practice : Proceedings of the Symposium on Electrodeposition Technology, Theory and Practice ”, Proceedings volume / Electrochemical Society, Vol 87, No. 17, (1987).
[5]J. D. Madden, S. R. Lafontaine and I. W. Hunter, Proc. 6th Int. Symp. on Micro Machine and Human Science, pp. 77–81, (1995).
[6]J. D. Madden and I. W. Hunter, “Three-dimensional microfabrication by localized electrochemical deposition ”, J. Microelectromech. Syst., pp. 524–532, (1996).
[7]I. W. Hunter, S. R. Lafontaine and J. D. Madden, US Patent 5 641 391, (1997).
[8]J. C. Lin, S. B. Jiang, D. L. Lee, C. C. Chen, P. C. Yeh, T. K. Chang and J. H. Yang “Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating ”, J. Micromech. Microeng. , Vol. 15, pp. 2405–2413, (2005).
[9]W. S. Boyle and G. E. Smith, “B.S.T.J. Briefs ”, Bell System Technical Journal, Vol. 49, pp. 587-593, April (1970).
[10]N. Holonyak and S. F. Bevacqua, “COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1−xPx) JUNCTIONS ”, Applied Physics Letters , Vol. 1 ,Issue 4, pp. 82-83, (1962).
[11]R. A. Said, ”Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modeling ”, Nanotechnology, Vol. 14, pp. 523-531, (2003).
[12]S. K. Seol, J. M. Yi, X. Jin, C. C. Kim, J. H. Je, W. L. Tsai, P. C. Hsu, Y. Hwu, C. H. Chen, L. W. Chang, G. Margaritondo, “Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition ”, Electrochemical and Solid-State Letters, Vol. 7, No. 9, pp. C95-C97, (2004).
[13]J. C. Lin, Y. S. Chen, C. F. Huang, J. H. Yang, T. K. Chang, Chung-Lin Wu, Y. R. Hwang and T. C. Chen, “Mechanical Properties of Copper Micrometer Pillars Fabricated by Intermittent MAGE Process ”, Int. J. Electrochem. Sci., Vol. 6, pp. 3536 – 3549, (2011).
[14]E. M. El-Giar, U. Cairo and D. J. Thomson, “Localized electrochemical plating of interconnects for microelectronic ”, Proc. IEEE Conf. on Communications, Power and Computing, Vol. 22–3, pp. 327–332, (1997).
[15]E. M. El-Giar, R. A. Said, G. E. Bridges and D. J. Thomson, “Localized electrochemical deposition of copper microstructures ”, J. Electrochem. Soc., Vol. 147, pp.586–591, (2000).
[16]S. K. Seol, A. R. Pyun, Y. Hwu, G. Margaritondo and J. H. Je, “Localized electrochemical deposition of copper monitored using real-time x-ray microradiography ”, Adv. Funct. Mater., Vol. 15, pp. 934–937, (2005).
[17]J. H. Choo, S. H. Yeo and F. F. Tan, “Flexible tooling for localized electrochemical deposition with wireelectrodischarge grinding ”, Micosyst. Technol., Vol. 10, pp. 127–136, (2004).
[18]S. H. Yeo, J. H. Choo and K. S. Yip, “Localized electrochemical deposition—the growth behavior of nickel micro-columns ”, Proc. SPIE, Vol. 4174, pp. 30–39, (2000).
[19]C. S. Lin, C. Y. Lee, J. H. Yang and Y. S. Huang, “Improved copper microcolumn fabrication by localized electrochemical deposition ”, Electrochemical and Solid-State Letters, Vol. 8, No. 9, pp. C125–C129, (2005).
[20]C. Y. Lee, C. S. Lin and B. R. Lin , “Localize electrochemical deposition process improvement by using different anodes and deposition directions ”, J. Micromech. Microeng., Vol. 18, 105008 (8pp), (2008).
[21]J. C. Lin, S. B. Jiang, D. L. Lee, C. C. Chen, P. C. Yeh, T. K. Chang and J. H. Yang, “Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating ”, J. Micromech. Microeng., Vol. 15, pp. 2405–2413, (2005).
[22]J. H. Yang, J. C. Lin, T. K. Chang, X. B. You, S. B. Jiang, “Localized Ni deposition improved by saccharin sodium in the intermittent MAGE process ”, J. Micromech. Microeng., Vol. 19, 025015 (12pp), (2009).
[23]L. A. Zadeh, “Fuzzy Sets ”, Information and Control, Vol. 8, pp. 338-353, (1965).
[24]E. H. Mamdani and S. Asslian, “A fuzzy logic controller for a dynamic plant ”, Internation Journal of Man-Machine Studies, Vol. 7, pp.1-13, (1975).
[25]R. E. Bellman and L. A. Zadeh, “Decision-making in a fuzzy environment ”, Management Science, Vol. 17, No. 4, pp. B141–B164, (1970).
[26]R. R. Yager, “Multiple objective decision-making using fuzzy sets ”, International Journal of Man-Machine Studies, Vol. 9, Issue 4, pp. 375–382, (1977).
[27]E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller ”, International Journal of Man-Machine Studies., Vol. 7, pp. 1-13, (1975).
[28]T. J. Procky and E. H. Mamdani, “A linguistic self-organizing process controller ”, Automatica, Vol. 15, Issue 1, pp.15-30, (1979).
[29]S. Shao, “Fuzzy self-organizing controller and its application for dynamic processes ”, Fuzzy Sets and System, Vol. 26, Issue 2, pp.151-164, (1988).
[30]B. S. Zhang and J. M. Edmunds, “Self-Organizing Fuzzy Logic Controller ”, IEE Proceedings D: Control Theory Applications, Vol. 139, No. 5, pp. 460-464, (1992).
[31]S. Knerr, L. Personnaz, and G. Dreyfus, “A new approach to the design of neural network classifiers and its application to the automatic recognition of handwritten digits ”, Proceedings IEEE International Joint Conference on Neural Network, Vol. 1, pp. 91-96, (1991).
[32]N. Otsu, “A Threshold Selection Method form Gary-Level Histograms ”, IEEE Transactions on System, Man, and, Gyber-netics, Vol. 9, pp. 62-66, (1979).
[33]L.G. Robers, “Machine Perception of Three-dimensional Solids ”, Optical and Electro-Optimal Information Processing, eds. J. Tippet et al., Cambridge, Mass. : MIT Press, pp. 159-197, (1965).
指導教授 黃衍任(Yean-Ren Hwang) 審核日期 2012-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明