博碩士論文 983203048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:73 、訪客IP:18.119.122.117
姓名 蘇韋任(Wei-Jen Su)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 金屬發泡材應用於質子交換膜燃料電池之兩相流場模擬分析
(Numerical Study on Transport Phenomena in PEMFC with Metal Foam as Flow Distributor)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文為首次利用unsaturated flow theory ( UFT )兩相流理論,建立三維,穩態以及非等溫之質子交換膜燃料電池模型,討論兩相流理論應用於金屬發泡燃料電池數值模型之結果,與實驗數據相互對照討論模型之適用性,並且藉由改變流道設計、金屬發泡材滲透率、入口加濕溫度、陰極入口當量比以及氣體擴散層性質來探討不同的操作條件的流場特性以及對性能之影響。
本文的模型包括集電板、流道、氣體擴散層、微孔層、觸媒層以及質子交換膜六層結構,以Darcy's model計算金屬發泡材應用於流道中以及氣體擴散層等多孔材質結構之流場;考慮陰極反應產生之水為氣態並且在流場中產生凝結相變,液態水在流場中的動態受氣體拖曳力與毛細壓力影響。透過商用求解器Fluent,並且藉由撰寫user define function ( UDF )達到計算兩相模型之需求。
研究結果顯示目前模型在高電流密度操作條件下,凝結相變的量過小,導致在高電流密度下質傳限制的效應不明顯,因此較適用於低電流密度下的操作條件;在流道設計方面,金屬發泡材流道的性能優於蛇型流道,對稱型出入口設計對於性能無明顯之提升。而降低金屬發泡材滲透率可提升電池之性能,且主要由in-plane方向的滲透率影響,當滲透率小於氣體擴散層之滲透率時,性能有明顯之提升。模擬結果也顯示金屬發泡材燃料電池在入口加濕溫度與操作溫度相同時有最好的性能,當入口加濕溫度高於操作溫度時,液態水生成的量會過高導致性能之下降。另外也發現陰極入口之當量比提高可提高液態水排除的能力;在氣體擴散層結構方面,微孔層有助於液態水往氣體體擴散層方向擴散,但在水凝結量不大時,微孔層對於氧氣的擴散反而造成阻礙。
摘要(英) The two-phase, three-dimensional, non-isothermal proton-exchange membrane fuel cell (PEMFC) model is first applied on PEMFC with metal foam as flow distributor in this study. Computational domain includes plate, flow channel, gas diffusion layer, micro porous layer, catalyst layer, and membrane. Darcy’’s model is employed in porous regions, and transport of liquid water inside the porous media is modeled using viscous forces and capillary pressure terms. Numerical results are compared with experimental data and the differences are discussed. Effects of various parameters, such as the type of channel, the permeability of metal foam, and operational parameters, are discussed.
Results show that the condensation rate of current model is lower than expected, resulting in disparities with experimental data in the concentration polarization region. Therefore, the suggested operation condition is of high voltage. Cell with metal foam as flow distributor has more uniform and higher oxygen concentration distribution in diffusion layer than that with serpentine flow field, and therefore has higher current density. Increasing the number of the inlet within the metal foam channel only helps decrease the pressure drop. The in-plane permeability of metal foam plays dominant role in cell performance and current density increases significantly when the permeability of metal foam is lower than that of gas diffusion layer.
Results also show that the most appropriate humidification temperature of inlet gas is to be same as the cell temperature, and a higher stoichiometry of inlet gas makes better removal of the liquid water in the gas diffusion layer, and results in better diffusion of oxygen.
關鍵字(中) ★ 多孔性介質
★ 數值模擬
★ 燃料電池
★ 兩相流
★ 金屬發泡材
★ 滲透率
★ 當量比
關鍵字(英) ★ porous media
★ numerical
★ stoichiometric
★ permeability
★ two phase
★ fuel cell
★ metal foam
論文目次 中文摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 ix
圖目錄 x
符號表 xiv
第一章 序論 1
1.1 前言 1
1.2 質子交換膜燃料電池原理與結構 1
1.2.1 基本原理 1
1.2.2 基本結構 3
1.2.3 燃料電池極化現象 6
1.3 文獻回顧 8
1.3.1 燃料電池性能研究 8
1.3.2 燃料電池數值模型 9
1.3.3 金屬發泡材應用於流道設計 16
1.4 研究動機與方向 18
第二章 理論分析 19
2.1 模型幾何外型與問題描述 19
2.1.2基本假設 20
2.2 兩相質子交換膜燃料電池之數學模型 21
2.2.1 Unsaturated Flow Theory(UFT) 21
2.2.2 統御方程式 24
2.2.1 邊界條件與初始條件 30
第三章 數值方法 31
3.1 有限體積法 31
3.2 交錯式網格 34
3.3 SIMPLE演算法 35
3.4 程式驗證 38
3.5 網格測試 39
第四章 結果與討論 40
4.1 金屬發泡材流場在實驗參數下與實驗值比較 40
4.2 流道設計的影響 42
4.2.1 金屬發泡材流道與蛇行流道比較 42
4.2.2 金屬發泡材流場設計比較 45
4.3 金屬發泡材流場參數討論 48
4.3.1 不同滲透率金屬發泡材的結果 48
4.3.2 不同加濕溫度下金屬發泡材的結果 50
4.3.3 陰極流量當量比的影響 51
4.4 氣體擴散層的影響 52
第五章 結論與建議 55
5.1 結論 55
5.2 未來研究方向與建議 56
參考文獻 58
參考文獻 [ 1 ] J. S. Yi, T. V. Nguyen, “Multi-component transport in porous eletrodes of proton exchange membrane fuel cells using the interdigitated gas distributors,” Journal of ElectrochemicalSources, Vol. 146, pp. 38-45, 1999.
[ 2 ] K. Masayuki, S. Toshio, N. Yasuo, “Study of performance improvement in a direct methanol fuel cell,” JSAE Review, Vol. 23, pp. 21-26, 2002.
[ 3 ] 羅世坤,「流場設計對質子交換膜燃料電池性能之研究」,2003.
[ 4 ] J.H. Jang, H. C. Chiu, W. M. Yan, W. L. Sun, “Effects of operating conditions on the performances of individual cell and stack of PEM fuel cell,” Journal of Power Sources, Vol. 180, pp. 476-483, 2008.
[ 5 ] M. A. Hickner, N. P. Siegel, K. S. Chen, D. S. Hussey, D .L. Jacobson, “Observations of Transient Flooding in a Proton Exchange Membrane Fuel Cell Using Time-Resolved Neutron Radiography,” Journal of The Electrochemical Society, Vol. 157, pp.B32-B38, 2010.
[ 6 ] T. E. Springer, T. A. Zawodzinski, S. Gottesfeld, “Polymer Electrolyte Fuel Cell Model,” Journal of The Electrochemical Society, Vol. 138, pp. 2334-2342, 1991.
[ 7 ] D. M. Bernardi and M. W. Verbrugge, “A mathematical model of the solid-polymer-electrolyte fuel cell,” Journal of The Electrochemical Society, Vol. 139, pp. 2477-2491, 1992.
[ 8 ] T. Berning, D.M. Lu, N. Djilali, “Three-dimension computational analysis of transport phenomena in a PEM fuel cell,” Journal of Power Sources, Vol. 106, pp. 284-294, 2002.
[ 9 ] W. He, J. S. Yi, T. V. Nguyen, “Two-Phase Flow Model of the Cathode of PEM Fuel Cells Using Intergiditated Flow Fields,” AIChEJournal, Vol. 46, No. 10, pp. 2053-2064, 2000.
[ 10 ] D. Natarajan, T. V. Nguyen, “Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell,” Journal of Power Sources, Vol. 115, pp. 66-80, 2003.
[ 11 ] J. H. Nam, M. Kaviany, “Effective diffusivity and water-saturation distribution in single and two layer PEMFC diffusion medium,” International Journal of Heat and Mass Transfer, Vol. 46, pp. 4595-4611, 2003.
[ 12 ] T. Berning, N. Djilali, “A 3D, Multiphase , Multicomponent Model of the Cathode and Anode of a PEM Fuel Cell,” Journal of The Electrochemical Society, Vol. 150, pp. A1589-A1598, 2003.
[ 13 ] 江炫毅,「燃料電池性能及水傳輸之模擬分析」,2006.
[ 14 ] N. Zamel, X. Li, “A parametric study of multi-phase and multi-species transport in the cathode of PEM fuel cell,” International Journal of Energy Reserach, Vol. 32, pp. 698-721, 2007.
[ 15 ] C. Y. Wang, C. Beckermann, “A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous mediaⅠ., Formulation,” Journal of Heat Mass Transfer, Vol. 36, No. 11, pp. 2747-2758, 1993
[ 16 ] U. Pasaogullari, C. Y. Wang, “Two-Phase transport and the role of micro-porous layers in polymer electrolyte fuel cells,” ElectrochimicaActa, Vol. 49, pp. 4359-4369, 2004.
[ 17 ] U. Pasaogullari, C. Y. Wang, “Two-Phase Modeling and Flooding Prediction of Polymer Electrolyte Fuel Cells,” Journal of Electrochemical Society, Vol. 152, pp. A380-A390, 2005.
[ 18 ] Y. Wang, C. Y. Wang, “A Nonisothermal, Two-Phase Model for Polymer Electrolyte Fuel Cells,” Journal of Electrochemical Society, Vol. 153, pp. A1193-A1200, 2006.
[ 19 ] Y. Wang, C. Y. Wang, “Two-Phase Transients of Polymer Electrolyte Fuel Cells,” Journal of Electrochemical Society, Vol. 153, pp. A1193-A1200, 2006.
[ 20 ] A. Kumar, R. G. Reddy, “Modeling of polymer electrolyte membrane fuel cell with metal foam in the flow-field of the bipolar/end plates,” Journal of Power Sources, Vol. 114, pp. 54-52, 2003.
[ 21 ] A. Kumar, R. G. Reddy, “Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 113, pp. 11-18, 2003.
[ 22 ] A. Kumar, R. G. Reddy, “Materials and design development for bipolar/end plates in fuel cells,” Journal of Power Sources, Vol. 129, pp. 62-67, 2004.
[ 23 ] S. M. Senn, D. Poulikakos, “Polymer Electrolyte Fuel Cells With Porous Materials as Fluid Distributors and Comparisons With Traditional Channeled Systems,” ASME, Vol.126, 2004.
[ 24 ] 蔡秉蒼,曾重仁,「金屬發泡材質子交換膜燃料電池之性能分析」,第三屆全國氫能與燃料電池學術研討會,FCO43,國立台南大學,2008.
[ 25 ] 施性安,「金屬發泡材應用於質子交換膜燃料電池內流道之模擬分析」,2010.
[ 26 ] S. V. Patankar, “Numerical Heat Transfer and Fluid Flows,” Hemisphere, Washington, 1980.
[ 27 ] W. Yuan, Y. Tang, M. Pan, Z. Li and B. Tamg, “Determination of theoptimal active area for proton exchange membrane fuel cells with parallel,interdigitated or serpentine designs,” Renewable Energy, Vol. 35, pp. 656-666, 2010.
[ 28 ] M. D. M. Innocentini, V. R. Salvini, A. Macedo, V. C. Pandolfelli, “Prediction of Ceramic Foams Permeability Using Ergun’’s Equation,” Materials Research, Vol. 2, No. 4, pp. 283-289, 1999.
[ 29 ] M. S. Ismail, T. Damjanovic, D. B. Ingham, L. Ma, M. Pourkashanian, “Effect of polytetrafluoroethylene-treatmen and microporous layer-coating on the in-plane permeability of gas diffusion layers used in proton exchange membrane fuel cells,” Jouranl of Power Sources, Vol. 195, pp. 6619-6628, 2010.
[ 30 ] M. S. Ismail, D. Borman, T. Damjanovic, D. B. Ingham, M. Pourkashanian, “On the through-plane permeability of microporous layer-coated gas diffusion layers used in proton exchange membrane fuel cells,” INTERNATIONAL JOURNAL OF HYDROGEN ENERGY , Vol. 36, pp. IO392-IO402, 2011.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2012-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明