博碩士論文 993205005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.116.69.195
姓名 李樹璇(Shu-Xuan Lee)  查詢紙本館藏   畢業系所 營建管理研究所
論文名稱 應用RGB影像處理模式於辨識地理環境變異之研究
(Developing a RGB recognition model for the disaster caused by Typhoon Morakot in Taiwan)
相關論文
★ 電廠工程工期相關衍生費用處理機制之研究★ 應用建築資訊模型與傳統估價於工程數量計算效能比較之研究
★ 特種貨物稅及勞務稅條例對房地產的影響-以大臺北為例★ 房地合一與所得稅改對於建設公司稅制利得與經營模式之個案研析
★ 營建工程現場之人力配置決策模式★ 以財務比率導向建構使用衍生性金融商品避險之預測模式-以建設公司及營造廠為例
★ 生命週期管理導入軍艦採購模式之探討★ 建築預鑄結構體生產難易度分級與分析之研究
★ 運用關聯法則探討預鑄構件生產派工之研究★ Automatic Porosity Detection for Permeable Concrete using X-ray CT Images
★ 運用巨量資料與系統模擬建構預鑄產業人力彈性運用之決策評估模型★ 國立大學工程設施BOT財務可行性評估流程之研究-以育成中心與宿舍為例
★ 露天開挖相關安全衛生設施標準之研究 -例外情事檢討與剖析★ 公共工程進度計算方式之認定研究
★ 工程技術顧問業融資因素分析之研究★ 以機關角度對於促進公共工程規劃設計資源再利用之法規研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究之目的在於利用具有即時性及周期性之遙測影像判釋橋梁周遭地區如崩塌地、林地、河道、河道寬度因災損而造成的改變,且針對此部分開發一個影像辨識系統以供使用,用以判斷災損嚴重程度。
本研究利用國立中央大學太空及遙測研究中心遙測影像訂購系統訂購八八風災災前災後之福衛二號遙測影像,利用設定橋梁經緯度座標挑選訂購橋梁遙測影像,其中包含設定日期範圍及過濾含雲量過高之遙測影像,使用災前災後遙測影像Pixel點之像素點RGB變化作為判釋主要依據同時進行變異監測,以C++為基礎開發一套影像判釋系統主要能對RGB變化判釋及包含各種影像處理功能如label、dialation、erosion、bone、cutline等影像處理功能加強對於遙測影像上需要處理的部分,根據RGB影像處理模式得出之結果進行處理則可得知河道骨幹及平均寬度,能夠清楚的表明災前災後遙測影像的變化及變化程度,並利用災前災後河道骨幹套疊了解河道改道狀況。
根據所得之結果能夠求得受災地區之面積變化、受災河道寬度之變化、何處受災程度嚴重、河道改道靠近鄰近村落情形,以此資訊幫助受損橋梁周遭災害範圍辨識,並利用Google SketchUP進行辨識範圍準確度驗證,準確度驗證結果有89%以上。
摘要(英) Typhoon Morakot has been the most severe typhoon disaster to strike Taiwan in recent decades causing tremendous damage to bridge surroundings in 2009. However, we still lack a means of assessing post-typhoon damage for follow-up rebuilding. This paper presents an integrated model that automatically measures changes in rivers, areas of damage to bridge surroundings, and changes in vegetation. The proposed model is based on a RGB enanced by the SOM optimization algorithm, and also includes the particular functions of dilation, erosion, and skeletonization to deal with river imagery. High resolution FORMOSAT-2 satellite imagery from before and after the invasion period is adopted. A bridge is randomly selected from the 129 destroyed due to the typhoon for applications of the model. The recognition results show that the river average width has increased 66% with a maximum increase of over 200%. The ruined segment of the bridge is located exactly in the most scoured region. There has also been a nearly 10% reduction in the vegetation coverage. The results yielded by the proposed model demonstrate a pinpoint accuracy rate of 99.94%. This study successfully develops a tool for large-scale damage assessment as well as for precise measurement after disasters.
關鍵字(中) ★ 遙測影像
★ 變異監測
★ 影像處理
關鍵字(英) ★ remote sensing imagery
★ typhoon disaster.
★ RGB damage assessment
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 前言 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的 2
1.4 研究架構 3
第二章 文獻回顧 4
2.1 遙測影像 4
2.2 灰階影像與彩色影像 8
2.3 遙測影像變異監測方法 9
2.4遙測影像可應用之領域 10
2.5 遙測影像判釋技術應用於複合性災害之可行性 12
2.6 遙測影像辨識案例 13
第三章 衛星遙測資料取得 14
1. 衛星遙測影像特性 14
2. 福衛二號 15
3. 太空遙測中心衛星影像查詢與訂購 17
第四章 影像辨識系統及寶來二橋影像辨識分析 23
4.1 影像辨識系統處理功能 23
4.2 影像辨識系統介面 29
4.3 寶來二橋影像辨識 31
4.4 寶來二橋部分區域框選及驗證準確度 42
第五章 結論與建議 45
5.1 結論 45
5.2 後續建議 46
參考文獻 47
參考文獻 中央氣象局,(2006), http://www.cwb.gov.tw/V7/index.htm 。
中央大學橋梁中心
國家太空中心,(2006), http://www.nspo.narl.org.tw/tw/ 。
洪如江,(2001),初等工程地質學大綱,財團法人地工技術研究發展基金會,臺北。
梁正育,(2005),「應用橋樑管理系統探討南投縣信義鄉、水里鄉橋梁災損原因」,國立中興大學土木工程學系,碩士論文,臺中。
陳怡睿,謝舜傑,陳信達,(2005),「應用知識庫分類法判釋SPOT衛星影像坡地崩塌之研究」,臺灣地理資訊學會年會暨學術研討會論文集,臺中。
曾忠一,(1988),「大氣衛星遙測學」,渤海堂。
林文賜,周天穎,林昭遠, (2001),“應用監督性類神經網路於衛星影像分類技術之探討”,航測及遙測學刊,第六卷第一期,第41-58 頁。
蕭淳伊,曾義星, (2009),“應用遙測影像與空載光達資料推估森林分佈面積及樹冠體積”,航測及遙測學刊,第十四卷第一期,第51-64 頁。
黃韋凱,林銘郎,陳良健,林彥享,蕭震洋, (2010),“物件導向分析方法應用於遙測影像之分區及崩塌地與人工設施分類”,航測及遙測學刊,第十五卷第一期,第29-49 頁。
黃凱易,(2000),“逐層分割群聚法及反覆移動均值群聚法於地覆非監督式分類之比較,”航測及遙測學刊”,第五卷第三期,第43-55頁。
鄭伊凡,(2010), "運用福爾摩沙二號衛星高時空分辨率遙測影像探討曾文水庫水質之時空變化",國立成功大學,碩士論文,台南。
吳敦安,(2006),” "福爾摩沙衛星二號遙測影像應用於河川砂石資源開採區域判釋",國立成功大學水利及海洋工程研究所,碩士論文,台南。
洪凱鄭(2009) ,”應用多光譜影像多種特徵偵測崩塌地之研究” ,國立成功大學空間資訊學系碩士論文,台南。
卓威辰,(2010),” "利用影像處理進行遙測影像的河道偵測與醫學影像的血管偵測",國立中央大學遙測科技學位學程研究所,碩士論文,中壢。
Bazi, Y. and Melgani, F. (2010). "Gaussian process approach to remote sensing image classification." IEEE Transactions on Geoscience and Remote Sensing 48(1): 186-197.
Bulsari, A. B., Kraslawski, A., Saxen, H. (1993). "Implementing a fuzzy expert system in an artificial neural network." Computers and Chemical Engineering 17(suppl): 405-410.
Blaschke, T. (2010). "Object based image analysis for remote sensing." ISPRS Journal of Photogrammetry and Remote Sensing 65(1): 2-16.
Breckling, B., Laue H ,Pehlke H. (2011). "Remote sensing as a data source to analyse regional implications of genetically modified plants in agriculture—Oilseed rape (Brassica napus) in Northern Germany." Ecological Indicators 11(4): 942-950.
Brewin, R. J. W., Hardman-Mountford,N . J ,Lavender , S. J.,Raitsos, D . E.,Hirata, T.,Uitz, J.,Devred, E.,Bricaud, A.,Ciotti, A.,Gentili, B. (2011). "An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing." Remote Sensing of Environment 115(2 ): 325-339.
Chanzy, A., Bruckler, L., Perrier, A. (1995). "Soil evaporation monitoring: A possible synergism of microwave and infrared remote sensing." Journal of Hydrology 165(1-4): 235-259.
Fageth, R., Allen, W. G.,Jaeger, U., (1996). "Fuzzy logic classification in image processing." Fuzzy Sets and Systems 82(3): 265-278.
Field, C. T. and Millar,P. S. (1999). "Laser remote-sensing system analysis for search and rescue." Applied Optics 38(12): 2586-2593.
Galvao, L. S., Formaggio, A. R.,Couto, E. G.,Robert, D. A. (2008). "Relationships between the mineralogical and chemical composition of tropical soils and topography from hyperspectral remote sensing data." ISPRS Journal of Photogrammetry and Remote Sensing 63(2): 259-271.
Guarino, I. and Guerriero, A. (2006). "Grid technology for remote sensing images management." WSEAS Transactions on Computers 5(9): 1957-1963.
Gan, R. and Yang, D. (1994). "Case-based decision support system with artificial neural network." Computers and Industrial Engineering 27(1-4): 437-440.
Huang, G.-R., Hu, H.-P.Tian,F.-Q.(2003). "Flood level forecast model for tidal channel based on the radial basis function-artificial neural network." Shuikexue Jinzhan/Advances in Water Science 14(2): 158-162.
Hong, R., Chen, R.,Hong, E.,Xu, Y. (1999). "Improving the recognition efficiency of optical pattern recognition system by using the artificial neural network technique." Jiguang Zazhi/Laser Journal 20(5): 32-33, 35.
Harding Jr, L. W., Itsweire, E. C.,Esaias, W. E., (1992). "Determination of phytoplankton chlorophyll concentrations in the Chesapeake Bay with aircraft remote sensing." Remote Sensing of Environment 40(2): 79-100.
Hikita, M., Fujimori, M.,Hayakawa, N.,Okubo, H. (1995). "Image process discharge classification under nonuniform fields in air and He at low pressure." IEEE Transactions on Dielectrics and Electrical Insulation 2(2): 263-268.
Haykin, S. (1999). “Neural Networks”, 2nd Ed., Prentice Hall, Upper Saddle River, NJ
Inglada, J. and Michel, J. (2009). Qualitative spatial reasoning for high-resolution remote sensing image analysis, 445 Hoes Lane / P.O. Box 1331, Piscataway, NJ 08855-1331, United States, Institute of Electrical and Electronics Engineers Inc.
J. A. Richards and X. Jia,(1993), “Remote Sensing Digital Image Analysis: An Introduction”,Springer-Verlag Berlin Heidelberg, Third Edition.
Kurekin, A., D.Radford, D.,Lever, K.,Marshallm D., Shark, L. k. (2011). "New method for generating site-specific clutter map for land-based radar by using multimodal remote-sensing images and digital terrain data." IET Radar, Sonar and Navigation 5(3): 374-388.
Liang, L., Yang, M.-H.,Li, Y.-F. (2010). "Hyperspectral remote sensing image classification based on ICA and SVM algorithm." Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis 30(10): 2724-2728.
Luo, W.-F., Zhong, L.,Zhang, B.,Gao, L.-R. (2010). "Independent component analysis for spectral unmixing in hyperspectral remote sensing image." Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis 30(6): 1628-1633.
Li, W. and Guo, Q. (2010). "A maximum entropy approach to one-class classification of remote sensing imagery." International Journal of Remote Sensing 31(8): 2227-2235.
Lizarazo, I. (2008). "SVM-based segmentation and classification of remotely sensed data." International Journal of Remote Sensing 29(24): 7277-7283.
Li, S., Tan, H.,Wang, K.,Xiao. C.,Xie, R.,Gao, S. (2009). "Research progress in wheat grain protein content monitoring using remote sensing." Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering 25(2): 302-307
MacGregor, J. F., Bharati, M. H., Yu, H.(2001) " Multivariate Image Analysis for process monitoring and control" Proc SPIE Int Soc Opt Eng p.17-26
McQueary, W. B. (1994). "R&D required for remote sensing." Sea Technology 35(11).
M. C. Su, C. -W. Liu, and S. -S. Tsay,( 1999),“Neural-network-based fuzzy model and its application to transient stability prediction in power systems,”IEEE Trans. Syst.,
Man,Cybern.,vol.29,no.1,pp.149-157.
M. C. Su, C. T. Hsieh, and C. C. Chin,( 1998),“A neuro-fuzzy approach to speech recognition without time alignment,” Fuzzy Sets and Systems, vol. 98, no. 1, pp. 33-41.
M. C. Su,( 1994) "Use of neural networks as medical diagnosis expert systems,"
Computers in Biology and Medicine,vol.24,no.6,pp.419-429.
Pratt, W. K. (1991). "Digital Image Processing." John Wiley & Sons, Inc
Qin, J., Cao, Y.Geng, J. (2010). "Evaluation model for damage extent of roads in Wenchuan earthquake-stricken areas based on remote sensing information." Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University 45(5): 768-774.
R. O. Duda and P. E. Hart,(1973), “Pattern Classification and Science Analysis”, New York: Wiley.
Ren, J., Guo, L.,Li, G. (2005). "Improving scene image classification with multi-class SVMs." Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 23(3): 295-298.
Shangguan, Z.-C., Li, S.-J.,Zhao, J.-Z. (2006). "Evolutionary artificial neural network for forecasting slope stability." Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University 27(SUPPL): 92-96.
Shanahan, J. F., Schepers, J. S.,Francis,D. D.,Varvel, G, E.,Wilhelm, W. W.,Tringe, J. M.,Schlemmer, M. R.,Major, D. J. (2001). "Use of remote-sensing imagery to estimate corn grain yield." Agronomy Journal 93(3): 583-589.
Song, X., Wang, J.,Huang, W.,Yan, G.,Chang, H. (2009). "Monitoring spatial variance of winter wheat growth and grain quality under variable-rate fertilization conditions by remote sensing data." Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering 25(9): 155-162.
Shen, Y.-T., Ni, G.-Q.,Xu, D.-Q.,Jiang, L.-L.,He, J.-P. (2008). "Study on gas exploration by hyperion hyperspectral remote sensing data." Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves 27(3): 210-213+223.
Su, M. C., and Chang, H. C. (2000). “Fast self-organizing feature map algorithm,” IEEE Trans. On Neural Networks, 13(3), 721-733.
Su, M. C., Zhao,Y. X., and Lee, J. (2004). “SOM-based Optimization.” in 2004 IEEE International Joint Conf. on Neural Networks IJCNN, Budapest, Hungary,pp.781-786.
Sharpe, R. N., Chow, M.-Y.,Briggs, S., Windingland, L. (1994). "Methodology using fuzzy logic to optimize feedforward artificial neural network configurations." IEEE Transactions on Systems, Man and Cybernetics 24(5): 760-767.
Su, M. C., Liu, T. K., and Chang, H. T. (1999). “An efficient initialization scheme for the self-organizing feature map algorithm.” in IEEE Int. Joint Conference on Neural Networks, pp.1906-1910.
Song, Y., Wan, Y.,Chen, P.,Chen, X. (2005). "Simulation model for classification of remote sensing images by SOM neural networks." Journal of Computational Information Systems 1(4): 827-833.
Tsai , F. , Lin E.-K. and Yoshino K. (2005) “Spectrally segmented principal component analysis of hyperspectral imagery for mapping invasive plant species “
Wang, M.-Y., Wu, P.,Xia, S.-R. (2005). "Microarray data classification based on artificial neural network ensembles." Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science) 39(7): 971-975.
Wen, G. and Wang,R. (2000). "Automatic extraction of main roads from aerial remote sensing images." Ruan Jian Xue Bao/Journal of Software 11(7): 957-964.
Wasowski, R. J. (1991). "Some ethical aspects of international satellite remote sensing." Photogrammetric Engineering and Remote Sensing 57(1): 41-48.
Weber, K., Ropertz, A.,Lamp, T. (2003). "Optical remote sensing in Europe: A UV-DOAS case study." EM: Air and Waste Management Association’’s Magazine for Environmental Managers: 26-31.
Wang, J.-L. and Jiang, B. (2005). "Using fuzzy artificial neural network to evaluate the mine structure." Zhongguo Kuangye Daxue Xuebao/Journal of China University of Mining and Technology 34(5): 609-612.
Wen, X.-P., Hu, G.-D.,Yang, X.-F. (2009). "Simulation experiments on adjacency effect of satellite remote sensing pixels." Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves 28(1): 46-49+65.
Xu, X., Wang, J.,Huang, W., Li, C.,Yang, X.,Gu, X. (2009). "Estimation of crop yield based on weight optimization combination and multi-temporal remote sensing data." Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering 25(9): 137-142.
Xiao, H. and Zhang, X. (2008). "Comparison studies on classification for remote sensing image based on data mining method." WSEAS Transactions on Computers 7(5): 552-558.
Yin, W., Zhang, J.,Huang, S. (1999). "Algorithm for air-bag actuation based on artificial neural network." Qinghua Daxue Xuebao/Journal of Tsinghua University 39(11): 73-75.
Zhang, J., Guo, W.,Yai, F. (2007). "Study on vegetation water content estimating model based on remote sensing technique." Yingyong Jichu yu Gongcheng Kexue Xuebao/Journal of Basic Science and Engineering 15(1): 45-53.
Zhang, L., Zhang, L.,Tao, D., Huang, X. (2011). "A multifeature tensor for remote-sensing target recognition." IEEE Geoscience and Remote Sensing Letters 8(2): 374-378.
Zhong, Y.-F. and Zhang, L.-P. (2010). "Initialization methods for remote sensing image clustering using K-means algorithm." Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics 32(9): 2009-2014.
Zhou, S. M., Li, H. X.,Xu, L. D. (2003). "A variational approach to intensity approximation for remote sensing images using dynamic neural networks." Expert Systems 20(4): 163-170.
Zhai, L., Tang, X.,Zhang, G.,Zhu, X. (2009). "Remote sensing image compression quality assessment and its application." Wuhan Daxue Xuebao (Xinxi Kexue Ban)/ Geomatics and Information Science of Wuhan University 34(3): 289-292.
Zhang, X., Shu, Y.,Yan, J.,Liu, N. (1997). "Passive IR remote sensing and auto-discrimination alarm system for pollution clouds." Jiguang Yu Hongwai/Laser and Infrared 27(5): 277-279.
Zhang, Y., Chen, J. M.,Miller, J. R.,Noland, T. L. (2008). "Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery." Remote Sensing of Environment 112(7): 3234-3247.
Zhang, Z., Gao, J.,Zhong, Q.,Li, S. (1997). "Application of artificial neural network on diagnosis of cold brittle fracture." Cailiao Gongcheng/Journal of Materials Engineering(5): 28-30.
Zou, W., Chi, Z.,Lo, K. C. (2008). "Improvement of image classification using wavelet coefficients with structured-based neural network." International Journal of Neural Systems 18(3): 195-205.
Zheng, Y.-G., Wang, P.,Ma, J.,Zhang, H.-B. (2005). "Remote sensing image classification based on BP neural network model®." Transactions of Nonferrous Metals Society of China (English Edition) 15(SPEC. ISS.1): 232-235.
Zhang, T. Y., and Suen, C. Y.,(1984) “A Fast Parallel Algorithm for Thinning Digital Patterns,” Communications of the ACM, vol. 27, no. 3, pp. 236-239.
指導教授 陳介豪(Jieh-Haur Chen) 審核日期 2012-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明