博碩士論文 993203089 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.22.250.25
姓名 周俊宏(CHUN-HUNG CHOU)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 輥軋變形對7075-T73鋁合金的微結構影響與陽極行為和皮膜性質的探討
(The effect of rolling deformation on the microstructure evolution and Anodic Aluminum Oxide behavior formed on 7075-T73 aluminum Alloy)
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本實驗主要研究7075鋁合金退火、變形(低溫輥軋, CR & 常溫輥軋, RR)及人工時效處理(T73)對微結構的影響。使用維克氏硬度試驗(Hv),光學顯微鏡(OM),穿透式電子顯微鏡(TEM)對7075-T73的微結構與析出型態進行分析。7075鋁合金使用15oC/hr的退火速率能夠獲得均勻的微結構組織與小的硬度變異值;T73處理後CRST73試片基地上擁有最高的硬度值、最低的硬度變異值與最少的顆粒數量分佈與均勻的析出強化相(η-MgZn2)分佈。
7075鋁合金表面處理陽極使用15 wt% 硫酸,硬化陽極使用22 wt% 硫酸、1.85 wt% 草酸、0.1 wt% 硫酸鋁的混合酸。V-t曲線是用來計算陽極與硬化陽極所消耗的能量。使用掃描式電子顯微鏡(SEM)觀察陽極氧化膜(AAO films)上的孔洞行態,X射線光電子能譜儀(XPS)分析陽極氧化膜表面的成分分佈。經過變形的試片(CRST73&RRST73)在陽極與硬化陽極處理時比ST73消耗的能量要少。在XPS的分析結果中可以從O/Al比去確定氧化膜的成分組成,在一般陽極處理(MA)後表面氧化膜的成分偏向Al(OH)3,硬化陽極處理(HA)後表面氧化膜成分偏向AlOOH,而陽極與硬化陽極氧化膜與基材界面處的成分偏向Al-O-H。使用電化學的方式來分析計算氧化鋁膜的耐腐蝕性,腐蝕試驗後得到CRST73比RRST73與ST73擁有更好的耐腐蝕性。
CIE L* a* b*色差和光學常數(吸收值(k)、折射率(n)、反射率(R))被應用於氧化鋁薄膜的光學性質進行分析。結果我們發現氧化膜厚度增加L值會降低,表面粗糙度增加折射率(n)和反射率(R)會降低,吸收值(k)會增加。
摘要(英) In this study, the 7075 aluminum alloy were subjected to annealing, deformation (Cryo-rolling, CR & Room temperature Rolling, RR) following artificial aging treatment (T73). The microstructure and precipitation morphology of 7075-T73 aluminum alloy which subjected to varied deformed process were analyzed by Vicker’s hardness (Hv), optical microscope (OM), transmission electro microscope (TEM). The 7075 aluminum alloy with 15oC/hr annealing rate that obtained an uniform microstructure and smaller hardness variation; after T73 treatment, the CRST73 sample owns a highest micro hardness lowest hardness variation and lowest particles distribution in the matrix and uniform precipitation of strengthening phase (η-MgZn2) distribution.
The surface treatment of 7075 aluminum alloy was subject to 15 wt% H2SO4 for anodic treatment (MA) and mixed with 22 wt% H2SO4, and 1.85 wt% H2C2O4, and 0.1 wt% (AlH4)2SO4 for hard anodic treatment (HA). The V-t curve was used to record the anodic and hard anodic treatments and calculated energy consumption during anodic treatment.. The scanning electrical microscope (SEM) was applied to observation the pore population of anodic alumina oxide (AAO) film, and X-ray photoelectron spectrum (XPS) analysis was used to obtain the surface composition of AAO films. The deformed samples (CRST73 and RRST73) were following anodic and hard anodic treatment that obtained lower energy consumption than the without deformed samples (ST73). In the XPS analysis results, according to O/Al ratio, we can determine the surface composition of the AAO film. The Al(OH)3 phase are favored form after MA treatment, the and AlOOH phase form after HA treatment. The other hand, the AlOOH phase and Al-O-H phase were found at matrix/oxide interface. The electrochemical analyses were applied to measure the corrosion resistance of AAO film. After corrosion test, the CRST73 sample owns a better corrosion resistance than the RRST73 and ST73.
The CIE L * a * b * color difference and optical constant (absorption values (k), the refractive index (n), reflectance (R)) were applied to analyze the optical properties of AAO films. As the results, we found the increasing thickness of the oxide film with reduced the L values of AAO films, and increases surface roughness with decreasing refractive index (n) and reflectance (R) but increasing the adsorption value.
關鍵字(中) ★ 陽極
★ 過時效處理
★ 退火
★ 7075
★ 硬化陽極
關鍵字(英) ★ hard anodic
★ anodic
★ 7075
★  annealing
★ over aging treatment
論文目次 目錄
中文摘要 i
Abstract ii
目錄 iv
圖目錄 vi
第二章 vi
表目錄 x
第二章 x
第一章 前言 1
第二章 理論探討與文獻回顧 2
2-2 鋁合金熱處理 2
2-3 7000系列鋁合金微結構 3
2-3-1 高強度7000系列鋁合金析出強化機制[2~7] 3
2-3-2 7000系列合金兩階段時效探討 10
2-3-3 銅、氫元素對7xxx鋁合金影響 12
2-3-4 7000系列輥軋介紹 15
2-3-5 比較T6及T73時效 18
2-3-6 7000系列鋁合金析出物(TEM&SEM)外形分析 21
2-4 鋁合金陽極與硬化陽極處理 23
2-4-1 陽極膜種類與成長機制 24
2-4-2 陽極氧化膜生成的電壓-時間曲線(V-t curve) 26
2-4-3 硬化陽極與電流、電壓的關係 30
2-4-4 7000系鋁合金對硬化陽極影響 33
2-5 光學檢測 35
2-6 腐蝕 37
2-6-1 腐蝕的定義[46] 37
2-6-2 腐蝕型態 37
2-6-3 氯離子腐蝕理論 38
第三章 實驗方法與步驟 40
3-1 實驗材料及試片準備 40
3-2 實驗步驟 40
第四章 結果與討論 46
4-1 熱處理與輥軋變形的微結構分析 46
4-1-1 鋁合金熱處理條件選用 46
4-1-2 變形差異對微結構影響分析 50
4-2 陽極與硬化陽極氧化膜性質分析 61
4-2-1 陽極與硬化陽極成長階段能量消耗分析 61
4-2-2 陽極與硬化陽極氧化膜孔洞型態 65
4-3 陽極與硬化陽極XPS成份分析 72
4-4 陽極與硬化陽極腐蝕阻抗能力分析 76
4-5 陽極與硬化陽極處理氧化膜色澤變化與光學性質 81
4-5-1 國際照明規範CIE L*a*b*成色標準 81
4-5-2 光學性質 82
第五章 結論 92
參考文獻 94
附錄一 102
附錄二 104
圖目錄
第二章
Fig. 2-1 7075鋁合金固溶處理及固溶處理後自然時效10天後的量熱曲線[6]。 4
Fig. 2-2 Al-Zn-Mg-Cu alloy 時效16小時120℃ HRTEM圖[2]。 5
Fig.2-3 7075鋁合金施以低溫輥軋後低溫時效HRTEM圖[3]。 5
Fig. 2-4 Al-Zn-Mg-Cu 四元460℃等溫相圖[7]。 6
Fig. 2-5 Al-Zn 二元相圖[8]。 7
Fig. 2-6 Al-Mg 二元相圖[8]。 7
Fig. 2-7 Al-Cu 二元相圖[8]。 8
Fig. 2-8 Al-Mg-Zn 三元相圖[8]。 9
Fig. 2-9 材料在不同參數下二階段時效的應力應變曲線[9]。 11
Fig. 2-10 AA7xxx-T6 鋁合金隨著Cu含量增加硬度也跟著增加[10]。 12
Fig. 2-11 TEM下的微結構 (A)7004, (B)7039, (C)7029, (D)7075, (E)7050鋁合金[10]。 13
Fig. 2-12 7075-T6鋁合金以極化電位-725mVSCE在除氣的0.5M的NaCl中預先通電的電流曲線,時間(a)0h,(b)6h,(c)12h,(d)24h[11]。 14
Fig. 2-13 7075-T6鋁合金以極化電位-725mVSCE在除氣的0.5M的NaCl中預先通電後的材料表面狀態,時間(a)0h,(b)6h,(c)12h,(d)24h[11]。 14
Fig. 2-14 7075合金在低溫輥軋及常溫輥軋不同應變下的取向分布差異柱狀圖(a)固溶材料(b)低溫輥軋下真應變2.3(c)常溫輥軋下真應變2.3(d)低溫輥軋下真應3.4(e)常溫輥軋下真應變3.4[12]。 16
Fig. 2-15 XRD分析7075合金CR、RTR及ST受時效處理前後[13]。 17
Fig. 2-16 TEM比較7075合金晶粒內微結構(a)T6, (b)T73[14]。 19
Fig. 2-17 7075鋁合金T6及T7量熱曲線[6]。 20
Fig. 2-18 TEM下7075鋁合金微結構(a)T6,(b)T7[6]。 20
Fig. 2-19 繞射環下7075鋁合金T6處理析出物的分佈量[6]。 21
Fig. 2-20 多孔陽極氧化鋁膜示意圖[33]。 23
Fig. 2-21 鋁合金氧化膜形成示意圖(a)初始電場分佈(b)穿透路徑形成(c)局部電場集中[34]。 25
Fig. 2-22 鋁合金氧化膜孔洞形成之穩定成長[35]。 25
Fig. 2-23 鋁合金陽極氧化膜隨陽極時間(0~49s)增加而變厚[37]。 26
Fig. 2-24 陽極過程電壓-時間關係圖[41]。 27
Fig. 2-25 不同陽極時間下的陽極膜SEM表面型態 (a)0, (b)2, (c)4, (d)5, (e)6, (f)10, (g)12, (h)20 sec[41]。 28
Fig. 2-26 TEM下觀察不同陽極時間的陽極膜表面型態 (a)3, (b)12, (c)20 sec[42]。 29
Fig. 2-27 陽極時間與膜上孔洞的關係(a)孔的大小與樹料的關係 (b)陽極時間對孔的大小關係[40]。 29
Fig. 2-28 硬化陽極在Type I (1 oC、1.8 M H2SO4溶液、電流密度j=120 mA cm-2),把鋁基材腐蝕剩下膜的部分,使用離子減薄(ion milling)把膜的底部除去露出陽極孔洞,分別在 (a) 27 V, (b) 32 V, (c) 40 V 三種電壓[44]。 31
Fig. 2-29 硬化陽極在Type I(1 oC、1.8 M H2SO4溶液、電流密度j=120 mA cm-2),硬化陽極膜側面孔壁生長狀態,分別在 (a) 27 V, (b) 32 V, (c) 40 V 三種電壓[44]。 32
Fig. 2-30 7075鋁合金硬化陽極處理電壓與時間關係圖[27]。 33
Fig. 2-31 7075鋁合金硬化陽極膜斷面SEM圖(a) alloy 1, (b) alloy 2[27]。 34
Fig. 2-32 L*a*b色彩圖。 35
Fig. 2- 33 金屬在氯化鈉溶液裡的腐蝕行為[47]。 39
第三章
Fig. 3-1 實驗流程。 44
第四章
Fig. 4-1 OM 50X下觀察AA7075-O不同退火速率對微結構影響。 48
Fig. 4-2 SEM觀察AA7075-O用15oC/hr退火速率所得材料表面的析出顆粒外型。 48
Fig. 4-3 OM下觀察AA7075鋁合金在熱處理前的金相結構 (a)倍率50X (b)倍率100X。 54
Fig. 4-4 OM下觀察AA7075鋁合金在 ST73的金相結構 (a)倍率50X (b)倍率100X。 54
Fig. 4-5 OM下觀察AA7075鋁合金在 CRST73的金相結構 (a)倍率50X (b)倍率100X。 55
Fig. 4-6 OM下觀察AA7075鋁合金在 RRST73的金相結構 (a)倍率50X (b)倍率100X。 55
Fig. 4-7 SEM與EDS觀察AA7075-ST73顆粒外型與成分。 56
Fig. 4-8 TEM下AA7075鋁合金ST73微結構。 57
Fig. 4-9 TEM下AA7075鋁合金CRST73微結構。 58
Fig. 4-10 TEM下AA7075鋁合金RRST73微結構。 59
Fig. 4-11 TEM下AA7075鋁合金CRST73晶界上的連續析出物及EDS成份分析。 60
Fig. 4-12 TEM下AA7075鋁合金CRST73基地上的棒狀析出物及EDS成份分析。 60
Fig. 4-13 相同電流密度下一般陽極與硬化陽極的電壓-時間曲線及微分曲線圖,分別: (a)A ST73; (b)A CRST73; (c)A RRST73; (d)HA ST73; (e)HA CRST73; (f)HA RRST73。 63
Fig. 4-14 SEM下觀察A-ST73陽極表面狀態 (a)6 s, (b)30 s, (c)300 s, (d)17.5 min。 66
Fig. 4-15 SEM下觀察A-CRST73陽極表面狀態 (a)6 s, (b)30 s, (c)300 s, (d)17.5 min。 67
Fig. 4-16 SEM下觀察A-RRST73陽極表面狀態 (a)6 s, (b)30 s, (c)300 s, (d)17.5 min。 68
Fig. 4-17 SEM下觀察HA-ST73硬化陽極表面狀態 (a)15min, (b)75 min, (c)135 min。 69
Fig. 4-18 SEM下觀察HA-CRST73硬化陽極表面狀態 (a)15min, (b)75 min, (c)135 min。 70
Fig. 4-19 SEM下觀察HA-RRST73硬化陽極表面狀態 (a)15min, (b)75 min, (c)135 min。 71
Fig. 4-20 陽極處理封孔前後比較極化曲線。 79
Fig. 4-21 硬化陽極處理封孔前後比較極化曲線。 80
Fig. 4-22 陽極與硬化陽極封孔前後L值與氧化膜厚度關係。 86
Fig. 4-23 不同製程試片在陽極處理後約10 µm厚度的光學性質 (a)k, (b)n, (c)R。 87
Fig. 4-24 不同製程試片在硬化陽極處理後約10 µm厚度的光學性質 (a)k, (b)n, (c)R。 88
Fig. 4-25 不同製程試片在硬化陽極處理後約100 µm厚度的光學性質 (a)k, (b)n, (c)R。 89
Fig. 4-26 陽極處理氧化膜厚度約10µm的光學性質與膜厚、粗糙度關係, (a) O/Al對能量、 (b) 光學性質對膜厚、 (c) 光學性質對粗糙度。 90
Fig. 4-27 硬化陽極處理氧化膜厚度約10µm的光學性質與膜厚、粗糙度關係, (a)O/Al對能量、 (b)光學性質對膜厚、 (c)光學性質對粗糙度。 91
表目錄
第二章
Table 2-1 7000 系鋁合金析出特性 10
Table 2-2 二階段時效熱處條件及實驗數據 11
Table 2-3 7075合金在不同條件下的拉伸數據 17
Table 2-4 7075合金T6及T73機械性質與晶間腐蝕敏感性比較 18
Table 2-5 分析7000系列鋁合金晶粒內顆粒及析出物的長寬比。 21
Table 2-6 分析7000系列鋁合金晶粒內顆粒及析出物的周長面積比。 21
Table 2-7 分析7000系列鋁合金晶粒內顆粒及析出物的種類、大小、外型。 22
第三章
Table 3-1 本實驗所使用材料合金成分。 40
Table 3-2 XPS在O 1s、Al 2p、Si 2p、Mg 2p、Zn 2p3、Cu 2p3分析各種成分的鍵結能[50]。 45
第四章
Table 4-1 AA7075-O不同退火速率的硬度及變異值。 48
Table 4-2 EDS觀察AA7075-O用15oC/hr退火速率所得材料表面的析出顆粒成分。 49
Table 4-3 AA7075鋁合金熱處理後硬度及變異值。 51
Table 4-4 AA7075鋁合金不同熱處理後的晶粒平均尺寸。 51
Table 4-5 AA7075在倍率100X下觀察的顆粒數量及尺寸分佈。 51
Table 4-6 AA7075鋁合金不同製程試片在一般陽極與硬化陽極各階段時間與能量消耗量測表。 64
Table 4-7 AA7075鋁合金不同製程試片的導電率 (IACS%)。 65
Table 4-8 SEM觀察AA7075在陽極與硬化陽極下孔洞狀態。 65
Table 4-9 約10µm膜厚下陽極表面與界面XPS分析(At%)。 75
Table 4-10 約10µm膜厚下硬化陽極表面與界面XPS分析(At%)。 75
Table 4-11 陽極與硬化陽極封孔前後極化曲線Ecorr與Epit電壓比較。 78
Table 4-12 不同製程試片在陽極處理後的膜厚及色澤變化表。 84
Table 4-13 不同製程試片在硬化陽極處理後的膜厚及色澤變化表。 84
Table 4-14 不同製程試片在陽極與硬化陽極處理後的表面粗糙度(Ra)。 85
Table 4-15 不同製程試片在陽極與硬化陽極處理後在可見光的波長範圍(400~700nm)內的光學性質:吸收值(k)、折射率(n)、反射率(R)。 85
參考文獻 參考文獻
1. J. R. Davis, ASM Specialty Handbook:Aluminum and Aluminum Alloys,ASM International, 1993
2. F. Wang, B. Xiong, Y. Zhang, H. Liu, Z. Li and Q. Liu, ”Microstructure and mechanical properties of spray-deposited Al–Zn–Mg–Cu alloy processed through hot rolling and heat treatment”, Materials Science and Engineering A, Vol.518, pp.144-149, 2009
3. Y. H. Zhao, X. Z. Liao, S. Cheng, E. Ma and Y. T. Zhu, “Simultaneously Increasing the Ductility and Strength of Nanostructured Alloys”, Advanced Materials, Vol.18, pp.2280-2283, 2006
4. Speidel M. O. and M. V. Hyatt, Advances in corrosion science and technology, Plenum Press, NY, l(2), pp.115-127, 1972
5. John E. Hatch, “Aluminum: Properties and Physical Metallurgy”, American Society for Metals, USA, pp.145-148, 1984
6. F. Viana, A. M. P. Pinto, H. M. C. Santos andA. B. Lopes, “Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization”, Journal of Materials Processing Technology, Vol.92-93, pp.54-59, 1999
7. D. W. Strawbridge, W. Hume-Rothery and A. T. Little, Journal of Materials Science, Vol.74, pp.191, 1948
8. American Society for Metals, Metals Handbook Committee and Taylor Lyman (Eds), Metals handbook:Metallography, Structures and Phase Diagrams, 8th edition, American Society for Metals, 1973
9. M. Chemingui, M. Khitouni, K. Jozwiak, G. Mesmacque and A. Kolsi, “Characterization of the mechanical properties changes in an Al–Zn–Mg alloy after a two-step ageing treatment at 70℃ and 135℃”, Materials and Design, Vol.31, pp.3134-3139, 2010
10. Q. J. Meng and G. S. Frankel, “Effect of Cu Content on Corrosion Behavior of 7xxx Series Aluminum Alloys”, Journal of The Electrochemical Society, Vol.151, pp.271-283, 2004
11. A. S. El-Amoush, “Investigation of corrosion behaviour of hydrogenated 7075-T6 aluminum alloy”, Journal of Alloys and Compounds, Vol.443, pp.171-177, 2007
12. S. K. Panigrahi and R. Jayaganthan, “Development of ultrafine grained high strength age hardenable Al 7075 alloy by cryorolling”, Materials and Design, Vol.32, pp.3150-3160, 2011
13. S. K. Panigrahi and R. Jayaganthan, “Effect of ageing on microstructure and mechanical properties of bulk, cryorolled, and room temperature rolled Al 7075 alloy”, Journal of Alloys and Compounds, Vol.509, pp.9609-9616, 2011
14. J. F. Li, Z. W. Peng, C. X. Li, Z. Q. Jla, W. J. Chen and Z. Q. Zheng, “Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments”, Transactions of Nonferrous Metals Society of China, Vol.18, pp.755-762, 2008
15. S. G. Lim, Y. S. Jung and S. S. Kim, ” Characteristics of rapidy solidified Al 7075-xwt. % Mn alloys”, Scripta Materialia, Vol.43, pp.1077-1081, 2000
16. S. P. Knight, N. Birbilis, B. C. Muddle, A. R. Trueman and S. P. Lynch, “Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al–Zn–Mg–Cu alloys”, Corrosion Science, Vol.52,pp.4073-4080, 2010
17. J. B. Jordon, M. F. Horstemeyer, K. Solanki, J. D. Bernardand J. T. Berry, T. N. Williams, “Damage characterization and modeling of a 7075-T651 aluminum plate”, Materials Science and Engineering A, Vol.527,pp.169-179, 2009
18. J. Wloka and S. Virtanen, “Detection of nanoscale η-MgZn2 phase dissolution from an Al-Zn-Mg-Cu alloy by electrochemical microtransients”, Surface and Interface Analysis, Vol.40, pp.1219-1225, 2008
19. F. Y. Hung, J. D. Liao, T. S. Lui and L. H. Chen, “Electrical current induced mechanism in microstructure and nano-indention of AleZneMgeCu (AZMC) Al alloy thin film”, Current Applied Physics, Vol.11, pp.1269-1273, 2011
20. F. Andreatta, M. M. Lohrengel, H. Terryn and J. H. W. de Wit, “Electrochemical characterisation of aluminium AA7075-T6 and vsolution heat treated AA7075 using a micro-capillary cell”, Electrochimica Acta, Vol.48, pp.3239-3247, 2003
21. X. M. Li and M. J. Starink, “Identification and analysis of intermetallic phases in overaged Zr-containing and Cr-containing Al–Zn–Mg–Cu alloys”, Journal of Alloys and Compounds,Vol.509, pp.471-476, 2011
22. J. Wloka, G. Burklin and S. Virtanen, “Influence of second phase particles on initial electrochemical properties of AA7010-T76”, Electrochimica Acta, Vol.53, pp.2055-2059, 2007
23. F. Wang, B. Q. Xiong, Y. G. Zhang, H. Q. Liu and X. Q. He, “Microstructural development of spray-deposited Al–Zn–Mg–Cu alloy during subsequent processing”, Journal of Alloys and Compounds, Vol.477, pp.616-621, 2009
24. G. Sha, Y. B. Wang, X. Z. Liao, Z. C. Duan, S. P. Ringer and T. G. Langdon, “Microstructural evolution of Fe-rich particles in an Al–Zn–Mg–Cu alloy during equal-channel angular pressing”, Materials Science and Engineering A, Vol.527, pp.4742-4749, 2010
25. F. Wang, B. Q. Xiong, Y. G. Zhang, Z. H. Zhang, Z. X. Wang, B. H. Zhu and H. Q. Liu,” Microstructure and mechanical properties of spray-deposited Al–Zn–Mg–Cu alloy”, Materials and Design, Vol.28, pp.1154-1158, 2007
26. M. Saenz de Miera, M. Curioni, P. Skeldon and G. E. Thompson, “Modelling the anodizing behaviour of aluminium alloys in sulphuric acid through alloy analogues”, Corrosion Science, Vol.50, pp.3410-3415, 2008
27. A. K. Mukhopadhyay, “On the Nature of the Fe-Bearing Particles Influencing Hard Anodizing Behavior of AA 7075 Extrusion Products”, Metallurgical and Materials Transactions A, Vol.29, pp.978-987, 1998
28. M. Saenz de Miera, M. Curioni, P. Skeldon and G. E. Thompson, “Preferential anodic oxidation of secondphase constituents during anodizing of AA2024-T3 and AA7075-T6 alloys”, Surface and Interface Analysis, Vol.42, pp.241-246, 2010
29. M. Lugoa, J.B. Jordonb, M.F. Horstemeyera, M.A. Tschoppa, J. Harrisd and A.M. Gokhale, “Quantification of damage evolution in a 7075 aluminum alloy using an acoustic emission technique”, Materials Science and Engineering A, Vol.528, pp.6708-6714, 2011
30. M. Saenz de Miera, M. Curioni, P. Skeldon and G.E. Thompson, “The behaviour of second phase particles during anodizing of aluminium alloys”, Corrosion Science, Vol.52, pp.2489-2497, 2010
31. A. Abolhasani, A. Zarei-Hanzaki, H. R. Abedi and M. R. Rokni, “The room temperature mechanical properties of hot rolled 7075 aluminum alloy”, Materials and Design, Vol.34, pp.631-636, 2012
32. Z. H. Li, B. Q. Xiong, Y. G. Zhang, B. H. Zhu, F. Wang and H. G. Liu, “Investigation of microstructural evolution and mechanical properties during two-step ageing treatment at 115 and 160 °C in an Al–Zn–Mg–Cu alloy pre-stretched thick plate”, Materials Characterization, Vol.59, pp.278-282, 2008
33. H. Masuda and F. Hasegwa, “Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution”, Journal of The Electrochemical Society, Vol.144, pp.127-130, 1997
34. G. E. Thompson, “Porous anodic alumina: fabrication, characterization and applications”, Thin Solid Films, Vol.297, pp.192-201, 1997
35. O. Jessensky, F. Mu ller and U. Gosele, “Self-organized formation of hexagonal pore arrays in anodic alumina”, Applied Physics Letters, Vol.72, pp.1173-1175, 1998
36. J. P. O’Sullivan and G. C. Wood, “The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminium”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol.317, pp.511-543, 1970
37. Z. Wu, C. Richter and L. Menona, “A study of anodization process during pore formation in nanoporous alumina templates”, Journal of The Electrochemical Society, Vol.154, pp.8-12, 2007
38. G. E. Thompson and G. C. Wood, “Porous anodic film formation on aluminium”, Nature, Vol.290, pp.230-232, 1981
39. G. Patermarakis, P. Lenas, CH. Karavassilis and G. Papayiannis, “Kinetics of growth of porous anodic Al2O3 films on A1 metal”, Electorchimica Acta, Vol.36, pp.709-725, 1991
40. G. C. Wood and J. P. O’Sullivan, “The anodizing of aluminium in sulphate solutions”, Electorchimica Acta, Vol.15, pp.1865-1876, 1970
41. P. S. Wei and T. S. Shih, “Monitoring the Progressive Development of an Anodized Film on Aluminum”, Journal of The Electrochemical Society, Vol.154, pp.678-683, 2007
42. T. S. Shih, P. S. Wei and Y. S. Huang, “Optical Properties of Anodic Aluminum Oxide Films on Al1050 Alloys”, Surface and Coating Technology, Vol.202, pp.3298-3305, 2008
43. T. P. Hoar and J. Yahalom, “The Initiation of Pores in Anodic Oxide Films Formed on Aluminum in Acid Solutions”, Journal of The Electrochemical Society, Vol.110, pp.614-621, 1963
44. K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch and U. G?sele, “Self-Ordered Anodic Aluminum Oxide Formed by H2SO4 Hard Anodization”, American Chemical Society NANO, Vol.2, pp.302-310, 2008
45. A. K. Mukhopadhyay and A. K. Sharma,” Influence of Fe-bearing particles and nature of electrolyte on the hard anodizing behaviour of AA 7075 extrusion products”, Surface and Coatings Technology, Vol.92, pp.212-220, 1997
46. 柯賢文,腐蝕極其防治,全華科技圖書出版,頁 5、9、134,民國八十七年
47. M. G. Fontana, Corrsoion engineering, third edition, McGraw-Hill, New York, pp.53-67, 1986
48. M. Tajally, Z. Huda and H.H. Masjuki, “A comparative analysis of tensile and impact-toughness behavior of cold-worked and annealed 7075 aluminum alloy”, International Journal of Impact Engineering, Vol.37, pp. 425–432, 2010
49. Y. Yang, D. H. Li, H. G. Zheng, X. M. Li and F. Jiang, “Self-organization behaviors of shear bands in 7075 T73 and annealed aluminum alloy”, Materials Science and Engineering A, Vol.527, pp.344-354, 2009
50. J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy”, Physical Electronics Inc., USA, 1992
51. J. Ofioro and C. Ranninger, “Stress-corrosion-cracking behavior of heat-treated AI-Zn-Mg-Cu alloy with temperature”, Materials Science, Vol.35, pp.59-62, 1999
52. H. Fooladfar, B. Hashemi and M. Younesi, “The Effect of the Surface Treating and High-Temperature Aging on the Strength and SCC Susceptibility of 7075 Aluminum Alloy”, Journal of Materials Engineering and Performance, Vol.19, pp.852-859, 2010
53. M. O. Speidel and M. V. Hyatt, “ Advances in Corrosion Science and Technology “, Vol.2, pp.224-243, 1972
54. J. K. PARK and A. J. ARDELL, “Microchemical analysis of precipitate free zones in 7075-Al in the T6, T7 and RRA tempers”, Acta Metall. Mater, Vol.39, pp.591-598, 1991
55. G. E. Thompson, H. Habazaki, K. Shimizu, M. Sakairi, P. Skeldon, X. Zhou and G. C. Wood, “Anodizing of aluminum alloys”, Aircraft Engineering and Aerospace Technology, Vol.17, pp.228–238, 1999
56. E. Cirik and K. Genel, “Effect of oxidation on fatigue performance of 7075-T6 alloy”, Surface & Coatings Technology, Vol.202, pp.5190-5201, 2008
57. S. Feliu Jr., J. A. Gonzalez, V. Lopez and M. J. Bartolome E. Escudero E. Otero, “Characterisation of porous and barrier layers of anodic oxides on different aluminium alloys”, J. Appl. Electrochem., Vol.37, pp.1027-1037, 2007
58. Y. Liu, M. A. Arenas, P. Skeldon, G. E. Thompson, P. Bailey, T. C. Q. Noakes, H. Habazaki and K. Shimizu, “Anodic behaviour of a model second phase: Al – 20 at. % Mg – 20 at. % Cu”, Corrosion Science, Vol.48, pp.1125-1148, 2006
59. H. Habazaki, X. Zhou, K. Shimizu, P. Skeldon and G. E. Thompson, G. C. Wood, “Incorporation and mobility of zinc ions in anodic alumina”, Thin Solid Films, Vol.292, pp.150-155, 1997
60. Y. Zuo, P. H. Zhao and J. M. Zhao, “The influences of sealing methods on corrosion behavior of anodized aluminum alloys in NaCl solutions”, Surface and Coatings Technology, Vol.166, pp.237-242, 2003
61. K. Mansouri, K. Ibrik, N. Bensalah and A. Abdel-Wahab, “Anodic Dissolution of Pure Aluminum during Electrocoagulation Process: Influence of Supporting Electrolyte, Initial pH, and Current Density”, Ind. Eng. Chem. Res., Vol.50, pp.13362–13372, 2011
62. O. Seri and K. Furumata, “Effect of Al-Fe-Si intermetallic compound phases on initiation and propagation of pitting attacks for aluminum 1100”, Materials and Corrosion, Vol.53, pp.111-120, 2002
63. 李正中,“薄膜光學與鍍膜技術”,光學-技術,第五版,藝軒圖書,2006年5月
64. S. Van Gils, P. Mast, E. Stijns and H. Terryn, “Colour properties of barrier anodic oxide films on aluminium and titanium studied with total reflectance and spectroscopic ellipsometry”, Surface & Coatings Technology, Vol.185, pp.303-310, 2004
65. E. A. Brandes and G. B(Editors), Smithells Metals Reference Book, 7th edition, Butter worth-Heinemann, Oxford, 1992
66. D. Altenpohl, “Aluminium”, Vol.37, pp.401~411, 1961
67. N. Birbilis and R. G. Buchheit, “Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys An Experimental Survey and Discussion”, Journal of The Electrochemical Society, Vol.152, pp.B140-B151, 2005
指導教授 施登士(Teng-Shih Shih) 審核日期 2012-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明