博碩士論文 993203090 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:18.226.82.32
姓名 張松柏(Soung-Po Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鋁合金6061真空硬銲與氣體鎢極電弧銲對接銲件之疲勞性質研究
(Reasearch 6061 aluminium alloy fatigue property of inert gas tungsten arc welding and vacuum brazing)
相關論文
★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發★ 駕駛模擬器技術開發及其在駕駛行為研究之應用
★ 電源模組老化因子與加速試驗模型之研究★ 應用駕駛模擬器探討語音防撞警示系統 對駕駛行為之影響
★ 遠距健康監測與復健系統之開發與研究★ 藥柱低週疲勞特性與壽限評估模式之研究
★ 非接觸式電子經緯儀電腦模擬教學系統之研究★ 適應性巡航控制系統對於駕駛績效影響之研究
★ 車輛零組件路況模擬系統之開發研究★ 應用殘障駕駛模擬器探討失衡路況對人體重心影響之研究
★ 聚縮醛(POM)機械性質之射出成型條件最佳化研究★ 駕駛模擬儀之開發驗證及應用於駕駛疲勞之研究
★ 即時眼部狀態偵測系統之研究★ 短玻璃纖維強化聚縮醛射出成型條件最佳化與機械性質之研究
★ 手推輪椅虛擬實境系統開發之研究★ 應用駕駛績效預測車輛碰撞風險之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在車輛工業最常用的就是6061-T6鋁合金,其最常應用的焊接方式為惰氣鎢極電弧銲接及真空硬銲,而現今各種規範都只針對熔融銲接的方式來做疲勞的壽命評估,所以本研究就針對惰氣鎢極電弧銲接(TIG)及真空硬銲(VB)探討兩種不同銲接方式的機械性質分析,經由硬度測試、拉伸、疲勞及金相的觀察,來探討兩種機械性質的差異性,並進一步探討現有規範的適用性。
由金相及微硬度測試的分析,可以發現惰氣鎢極電弧銲熱影響區影響寬度約為銲道的寬度。而真空硬銲由於在長時間高溫的環境下,VB母材受到退火的影響使得析出硬化成份成長粗化,造成硬度下降,由於材料及銲道擴散層都為平均加熱,所以硬度並無明顯的差異,硬度與惰氣鎢極電弧銲的熱影響區相近;由拉伸及疲勞測試可發現,在惰氣鎢極電弧銲接受拉伸及疲勞的斷裂點不同,拉伸斷裂點於強度最弱的熱影響區,疲勞斷裂則是在缺陷最多易產生裂縫成長的銲道。在真空硬銲方面拉伸及疲勞斷裂點皆為銲接擴散層,由於材料強度並無明顯的變化,因此最容易在產生缺陷的位置造成破壞。
在與各規範比較發現,惰氣鎢極電弧銲在低週疲勞104循環下的應力範圍與IIW預測最為接近,但是各規範越到高週壽命預估與實際實驗差距越大有過度保守的趨勢。尤其是Euecode 9規範評估最為保守。而真空應銲由於銲接品質受到多種因素的影響如硬銲持溫時間及銲接固定壓力,造成銲接品質不均,使得疲勞性質離散度大,無法從規範中穩定評估。
摘要(英) The 6061-T6 aluminium alloy is commonly used in automobile industry, and inert gas tungsten arc (TIG) welding and vacuum brazing(VB) welding are the most popular to be applied. Nowadays, the existing regulations only focuses on the specific fatigue assessment of melting welding. As a result, the study analyzes the differences of mechanical properties of inert gas tungsten arc (TIG) welding and vacuum brazing(VB) welding through hardness test, static fatigue test, tensile test, and metallographical observation and investigates the applicability of existing regulations as well.
According to the analysis of metallographical and hardness tests, the result is discovered that the influenced width of inert gas tungsten arc (TIG) welding is almost equal to the width of welding, whereas the base material of vacuum brazing(VB) welding exposes in hot environment for long time to annealing, precipitation hardening phase grows, which decreases the hardness; in the meanwhile, the material and welding diffusion layer are heated equally, so there is no obvious differences of hardness with heat affect zone of inert gas tungsten arc (TIG) welding. The breaking point of tensile and fatigue of gas tungsten arc (TIG) welding is different from the tests. The break of tensile test occurs in heat affect zone whereas it appears in the weak welding fulled with cracks in fatigue test. However, for vacuum brazing(VB) welding, the breaking points of tensile and fatigue both occur within welding diffusion layer. Since there is no significant differences of strength of the material, the damages appear within the positions where the weaknesses will grow easily.
Compared with each regulation, the prediction of inert gas tungsten arc (TIG) welding is in accordance with IIW within the stress range of lower cycle 104, but the trend becomes conservative for every regulation has hugh differences between higher cycle prediction and results from experiment, and this can be seen the most from the regulation prediction assessment of Euecode 9. On the other hand, the vacuum brazing(VB) welding can be not be stable predicted since it is easily influenced by properties such as the time length of holding temperature and the fixed pressure, the quality is unstable and the statistics of fatigue is distributed differently.
關鍵字(中) ★ 鋁合金
★ 6061
★ 壽命評估
★ 惰氣鎢極電弧銲接
★ 真空應銲
關鍵字(英) ★ Inert Gas Tungsten ArcWelding
★ 6061
★ Vacuum Brazing
★ Aluminium Alloy
★ fatigue
論文目次 目錄
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 鋁合金分類與說明 3
2.1.1 鋁合金編號說明 3
2.1.2 鋁合金熱處理代號 4
2.2 鋁及鋁合金銲接方法 6
2.2.1 惰性鎢極電弧銲接(TIG銲) 7
2.2.2 真空硬銲(Vacuum Brazing,VB) 12
2.3 鋁合金銲接結構壽命評估 18
3.2.1 銲接壽命的重要因子 19
3.2.2 常用疲勞分析方法 26
第三章 實驗方法與設備 31
3.1 實驗材料 32
3.2 銲接加工 32
3.2.1 惰性氣體鎢極電弧銲接 32
3.2.2 真空硬銲 33
3.2.3 標準試片加工 36
3.2.4 拉伸測試 37
3.2.5 疲勞測試 39
3.2.6 硬度測試 40
3.2.7 金相觀察 40
3.2.8 SEM斷面分析 41
第四章 結果與討論 42
4.1 TIG銲接及真空硬銲金相顯微組織觀察 42
4.2 硬度測試 45
4.3 拉伸性質 46
4.4 拉伸試片SEM斷面分析 50
4.5 疲勞性質 51
4.6 疲勞斷面分析 55
第五章 結論與未來展望 59
5.1 結論 59
5.2 未來展望 60
文獻 61
附錄A、BS8118規範相關資料 65
附件B、EURCODE 9規範相關資料 67
附件C、IIW規範相關資料 69
參考文獻 [1] W.S. Miller,L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet,A. Haszler And A. Vieregge,” Recent development in aluminium alloys for the automotive industry” Materials Science and Engineering, Vol. A280 ,pp.37–49,2000.
[2] 劉文海,”鋁合金車體與底盤之發展動向”,機械工業雜誌, 2006年6月, pp. 75-84.
[3] 結構疲勞分析簡介,上網日期:2012.06.25.網址:http://www2.cna.edu.tw/961213/month/cnadata/mm/19-6/19-6-7.htm
[4] BS 8118:1991. Structural use of aluminium—part 1 code of practice for design. London: BSI, 1991.
[5] ECCS .European recommendations for aluminium alloy structures. In: European convention for constructional steelwork. Document No. 68. Brussels: ECCS; 1992.
[6] The Aluminum Association. Specifications for aluminium structures. Washington, DC: The Aluminum Association; 1994.
[7] DNV. Class note: fatigue assessment of aluminium structures.Technical Report No. LIB-J-000010; 1995.
[8] International Institute of Welding. Fatigue design of welded joints and components. Abington, Cambridge: Abington Publishing;1996.
[9] Eurocode 9. Design of aluminium structures: part 1-3: structures susceptible to fatigue. Brussels: CEN, 1998 ENV, 1999-2
[10] 姜至華,”鋁合金電弧銲接及硬軟銲應用技術”, 財團法人徐氏基金會, 中華民國八十四年五月三十日初版一刷
[11] 趙光榮,”氬氣鎢極電銲能力本位訓練教材_鋁板平銲機本銲道銲接,”行政院勞工委員會職業訓練局,民國90.
[12] 鄭慶民,”熱處理行鋁合金銲接性質之研究,”國立交通大學,博士論文,民國94.
[13] 車洪艷,朱亮,陳劍虹,許文福 and 鋁先鋒,”6061鋁合金平板對接焊接接頭拉伸性能研究,”蘭州理工大學學報,Vol.34,No.2,Apr. 2008.
[14] 趙勇,付娟,張培磊,嚴坚 and 蔣成禹,”銲接方法對6061鋁合金接頭性能影響的研究,”江蘇科技大學學報,Vol.20,No.1,Feb. 2006.
[15] 姜家斌,”鋁合金5052與6061應用惰氣金屬極電弧銲對接之研究,”國立交通大學, 機械工程研究所,碩士論文,民國83.
[16] 吳政江,”鋁合金5052與6061銲後熱處理機械性質研究,”國立台灣師範大學,工業教育研究所,碩士論文,民國86.
[17] W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood and P. Desmet, “Recent development in aluminium alloys for the automotive industry”, Materials Science and Engineering-A,Vol. 280, pp. 37-49, 2000.
[18] 葉獻文,” 鋁、銅合金真空硬銲之研究,”國立中興大學,機械工程研究所碩士論文, 民國97.
[19] 廖盛如,” 6061 鋁合金真空硬銲接合面之機械性能與氣密性,”國立中興大學,機械工程研究所,碩士論文, 民國96.
[20] S.H. Wang, H.P. Zhou and Y.P. Kang, “The influence of rare earth elements on microstructures and properties of 6061 aluminum alloy vacuum-brazed joints”, Journal of Alloys and Compounds,Vol. 352, pp. 79-83, 2003.
[21] F. Gao, H. Zhao, D.P. Sekulic, Y. Qian and L. Walker, “Solid state Si diffusion and joint formation involving aluminum brazing sheet”, Materials Science and Engineering-A, Vol. 337,pp. 228-235, 2002.
[22] M. Kobashi, T. Ninomiya, N. Kanetake and T. Choh, “Effect of alloying elements in the brazing sheet on the bonding strength between Al2O 3and aluminum”, Scripta Materialia, Vol. 34,No. 3, pp. 415-420, 1996.
[23] P. Liu, Y.J. Li, J. Wang and J.S. Guo, “Vacuum brazing technology and microstructure near the interface of Al/18-8 stainless steel”,Materials Research Bulletin, Vol. 38,pp. 1493-1499, 2003.
[24] E.B. Ratts, Y.L. Murphey and Y.N. Zhou, “Thermal modeling of controlled atmosphere brazing process using virtual reality technology”, Applied Thermal Engineering, Vol. 20,pp. 1667-1678, 2000.
[25] S.S. Wang, M.D. Cheng, L.C. Tsao and T.H. Chuang, “Corrosion behavior of Al-Si-Cu-(Sn, Zn) brazing filler metals”, Materials Characterization, Vol. 47, pp. 401-409, 2001.
[26] Q.Y. Zhang, “Reduction of metal ions on aluminium in molten flux during aluminium brazing”, China Welding, Vol. 3, No. 1,pp. 10-14, 1994.
[27] V. N. Drew, ”Fatigue Considerations in Welded Structure,” SAE Technical Paper No. 820695, Society of Automotive Engineers, Warrendale, PA, 1982.
[28] T. R. Gurney, "Fatigue of Welded Structures," Cambridge University Press, London, second ed., pp. 1, 1979 .
[29] L. Tall,”Residual Stress in Welding Plates-A Theoretical Study,”Welding Journal,Vol.43,pp.10-21,Jan.1964.
[30] G.Grzegorz,”Effect of Residual Stresses on Fatigue Crack Grack Growth in Steel Weldments under Constant and Variable Amplitude Loads,”Fracture Mechanics,ASTM STP 677,C.W.Smith,Ed.,American Society for Testing and Materials,Journal of Basic Engineering,No.3,pp.459-464,1967.
[31] AWS.Welding Handbook,Vol.1,7th ed.,1982.
[32] Jaccard R. Fatigue crack propagation in aluminium. IIW Doc.XIII-1377-90; 1990.
[33] L.W. Eastwood,”Gases in Non-Ferrous Metal and Alloys,”American Society for Metals,1953.
[34] R.F.Ashton,R.P.Wesley and C.R.Dixon,”The Effect of Porosity on 5086-116 Aluminium Alloy Welds,”Welding Journal,March 1975,95-98.
[35] Gurney TR. The influence of thickness on the fatigue strength of,welded joints. In: Proceedings of the Second International Conference ,on Behaviour of Offshore Structures, London. 1979.
[36] Maddox SJ. The effect of plate thickness on the fatigue strengthof fillet welded joints. Abington, Cambridge: Abington Publishing;1987.
[37] Maddox SJ. Scale effect in fatigue of fillet welded aluminium alloys. In: Proceedings of the Sixth International Conference on Aluminium Weldments, Cleveland, OH, 3–5 April 1995. Miami,FL: American Welding Society; 1995 [ISBN 0-87171-458-2].
[38] Maddox SJ.” Review of fatigue assessment procedures for welded aluminium structures,” International Journal of Fatigue ,Vol. 25,pp. 1359–1378,2003.
[39] J. A. M. Pinho-da-Cruz, J. A. M. Ferreira, J. D. M. Costa and L. F. P. Borrego, ”Fatigue analysis of thin AlMgSi welded joints under constant and variable amplitude block loadings,” Thin-Walled Structures, Vol. 41,No. 5, pp. 389-402, May 2003.
[40] M. Matema, A. Koursaris and A. Paterson, ”Fatigue properties of fabricated aluminium I-beams,” Journal of The South African Institute of Mining and Metallurgy, Vol. 105, No. 3, pp. 177-181, March 2005.
[41] M. Kalenda and D. T. Madeleine, “Corrosion fatigue behaviour of aluminium alloy 6061-T651 weldedusing fully automatic gas metal arc welding and ER5183 filler alloy” International Journal of Fatigue,Vol. 33,pp. 1539–1547,2011.
[42] K. K. Mustafa, K. Erdinç, Ş. Aydın and B. Ozden,” EXPERIMENTAL COMPARISON OF MIG AND FRICTION,” The Arabian Journal for Science and Engineering, Volume 35, Number 1B, April 2010.
[43] 林敬勇 and 馬建民,”銲接工藝方法對6061-T6鋁合金銲接接頭疲勞性能的影響,”航空材料學報,Vol.24,No.3,2004.
[44] X.X. Yao, R Sandstrom and T. Stenqvist,” Strain-controlled fatigue of a braze clad Al–Mn–Mg alloy at room temperature and at 75 and 180°C,” Materials Science and Engineering A,Vol. 267 ,pp. 1–6,1999.
[45] X. Yang, C. Dong, D. Shi And L. Zhang,” Experimental investigation on both low cycle fatigue and fracture behavior of DZ125 base metal and the brazed joint at elevated temperature” Materials Science and Engineering A,Vol. 528 ,pp. 7005-7011,2011.
[46] AWS-A5.8: Specification for Filler Metals for Brazing and Braze Welding,AWS,2004.
[47] ASTM-E8: Standard Test Methods for Tension Testing of Metallic Materials,ASTM,2012.
[48] ASTM-E466: Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials,ASTM,2012.
[49] ASTM-E407: Standard Practice for Microetching Metals and Alloys,ASTM,2012.
指導教授 黃俊仁(Jiun-Ren Huang) 審核日期 2012-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明