博碩士論文 993203065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:104 、訪客IP:3.144.30.14
姓名 闕宜萱(Yi-shiuan Chiue)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析
(Numerical analysis of thermal stress of sapphire crystal cooling by the Kyropoulos method)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ KY法生長大尺寸氧化鋁單晶之數值模擬分析★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析
★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究★ CZ法生長大尺寸藍寶石單晶之熱流場與溶質數值模擬研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) KY法生長氧化鋁單晶過程中,經常出現晶體破裂情形,這是由於在KY爐生長藍寶石過程裡,藍寶石晶體生長環境溫度約為2323K左右,整顆晶體生長完成後將在爐體內降溫至室溫後開爐取出,其劇烈的溫度變化使得晶體在降溫過程中會產生熱應力,導致晶體破裂。為了提升藍寶石晶體的經濟效益,必須了解KY長晶爐內部的熱傳及晶體熱應力場情形。
由於晶體生長過程無法直接觀察量測長晶爐內之情況,本研究使用有限元素法COMSOL軟體模擬暫態二維軸對稱之模型,模擬晶體與坩堝完全不相黏、晶體與坩堝底部相黏以及晶體與坩堝部分側邊和底部相黏等三種晶體與坩堝接觸情況,其模擬結果呈現當晶體與與坩堝完全不相黏時,其熱應力完全由晶體內部溫梯造成,最大值約為107並未達到藍寶石晶體破裂極限,因此晶體不會破裂;晶體與坩堝底部相黏時,所產生的熱應力主因為晶體和乾堝熱膨脹係數不一樣造成晶體收縮時受到坩堝拉扯的力,其最大值約為109,超過藍寶石晶體的破裂極限,晶體會從熱應力集中處產生破裂現象。
摘要(英) The cracks that often appear in sapphire crystal during the cooling process in a Kyropoulos furnace after growth may be induced by higher thermal stress due to thermal inhomogeneity in the crystal. This happens very often in the growth of larger sapphire crystals. How to improve this is the key to improving the quality of the sapphire crystal. In this study, a numerical computation is performed to predict the thermal and stress history during the cooling process in a Kyropoulos furnace. The thermal distribution during the cooling process is controlled by the cooling and power reduction processes. Since the sapphire crystal is semitransparent, radiative heat transfer plays an important role at higher furnace temperatures. However, this effect is less significant when the furnace temperature decreases. The thermal and stress distributions in the crystal during the process are significantly affected by the internal radiative heat transfer.
In this study, we simulate about three cases, ⅰ) crystal and crucible completely unsticky, ⅱ)only bottom of the crystal and the crucible are sticky, and the results show that the crystal don’t crack when crystal and crucible completely unsticky, the stress is caused entirely by the internal temperature gradient of crystal. When the crystal sticky with crucible, thermal stress generated by the coefficient of thermal expansion of crystals and crucible are different, the maximum value of thermal is approximately 109(Pa), exceed the breakdown limit of sapphire crystal, so the crystal crack. If the sticky area is more, then the thermal stress concentration is more, cracks of sapphire is more serious.
關鍵字(中) ★ 熱應力
★ 泡生法
★ 氧化鋁單晶
關鍵字(英) ★ sapphire
★ thermal stress
★ KY
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
符號說明 X
第一章 緒論 1
1-1 氧化鋁單晶簡介 1
1-2 泡生法(Kyrupoulos Method) 2
1-3 藍寶石單晶熱應力概論 3
1-4 文獻回顧 4
1-5 研究目的 6
第二章 系統描述與數學模式 12
2-1 物理系統與假設 12
2-2 數學模式 13
第三章 求解方法與分析步驟 21
3-1 求解方法 21
3-2 晶體降溫模擬分析步驟 21
3-2-1 繪製幾何圖形 22
3-2-2 元素形式及材料設定 22
3-2-3 統御條件設定與邊界條件設定 22
3-2-4 產生網格、網格測試與收斂測試 23
3-2-5 求解與分析 23
第四章 結果與討論 29
4-1 降溫時晶體與坩堝不相黏時晶體熱場及熱應力場分析 29
4-2降溫時坩堝與晶體底部相黏時的熱應力分析 33
第五章 結論與未來研究方向 51
5-1 結論 51
5-2 未來研究方向 52
參考文獻 53
參考文獻 [1]D.C. Harris, F. Schmid, D. R. Black, E. Savrun, H.E. Bates, “Factors that influence mechanical failure of sapphire at hightemperature,” SPIE, Vol. 3060, pp. 226-235, 1997.
[2]D.C. Harris, F. Schmid, J.J. Mecholsky, Y.L. Tsai, “Mechanism of Mechanical Failure of Sapphire at High Temperature”, SPIE, Vol. 2286, pp. 16-25, 1994.
[3]G.B. Stringfellow, “Organometallic Vapor Phase Epitaxy: Theory and Practice”, 1989.
[4]M.L. Hitchamn, “Chemical Vapor Deposition: Principle and Application”, 1993.
[5]M.S. Akselrod, F. J. Bruni, “Modern trends in crystal growth and new applications of sapphire”, Journal of Crystal Growth, In Press, Corrected Proof, 2012.
[6]D. viechnicki, “crystal growth using the heat exchanger method” Journal of Crystal Growth, Vol. 26, pp.162-164, 1974.
[7]H.J. Scheel, T. Fukuda, “The Development of Crystal Growth Technology ”, Crystal Growth Technology, pp. 3-14, 2003.
[8]R. falckenberg, “growth of stoichiometric Mg-Al spinel single crystals by a modified verneuil technique”,Journal of Crystal Growth, Vol. 13, pp. 723-725, 1972.
[9]G. Foulon, “Laser heated pedestal growth and optical properties of Yb3+-doped LiNbO3 single crystal fibers”, Journal of Crystal Growth, Vol. 245, pp. 555-560, 2000
[10]劉哲銘,「以熱交換器法生長氧化鋁單晶與晶體檢測」,國立中央大學機械工程研究所博士論文,1999。
[11]呂中偉,「以熱交換器法生長氧化鋁單晶之模擬分析」,國立中央大學機械工程研究所博士論文,2002。
[12]陳建宏,「柴式法生長氧化鋁單晶過程最佳化熱流場之分析」,國立中央大學機械工程研究所碩士論文,2008。
[13]陳恆超,「柴氏法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析」,國立中央大學機械工程研究所碩士論文,2009。
[14]陳俊宏,「泡生法生長氧化鋁單晶之數值模擬分析」,國立中央大學機械工程研究所碩士論文,2012。
[15]Yusuke Mori, “growth of a nonlinear optical crystal: cesium lithium borate”, Journal of Crystal Growth, Vol. 156, pp. 307-309, 1995.
[16] Wei Jia Zhang, “Crystal growth of NaNb3O8 solid solution by kyropoulos method”, Journal of Crystal Growth, Vol. 100, pp. 655-657, 2002.
[17]M.S. Akselrod, F. J. Bruni, “Modern trends in crystal growth and new applications of sapphire”, J. Cryst. Growth, In Press, Corrected Proof, 2012.
[18]李維特,「熱應力理論分析及應用」,中國電力出版社,2004。
[19]N. Miyazaki, “Quantitative assessment for cracking in oxide bulk single crystals during Czochralski growth: development of a computer program for thermal stress analysis” Journal of Crystal Growth, Vol. 162, pp. 83-88, 1996.
[20]T. Tsukada, “Numerical and experimental studies on crack formation in LiNBO3 single crystal” Journal of Crystal Growth, Vol. 180, pp. 543-550, 1997.
[21]Masaki Kobayashi, “Effect of internal radiation on thermal stress fields in CZ oxide crystals” Journal of Crystal Growth, Vol.241, pp. 241-248, 2002.
[22]S.E. Demina, “Use of numerical simulation for growing high-quality sapphire crystals by the Kyropoulos method” Journal of Crystal Growth Vol. 310, pp. 1443-1447, 2008
[23]陳恆超,「柴氏法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析」,國立中央大學機械工程研究所碩士論文,2009。
[24]Chung-Hung Chen, “Numerical simulation of heat and fluid flows for sapphire single crystal growth by the Kyropoulos method” Journal of Crystal Growth, Vol. 318, pp. 162-167, 2011.
[25]S.E. Demina, “3D unsteady computer modeling of industrial scale Ky and Cz sapphire crystal growth” Journal of Crystal Growth, Vol. 320, pp. 23-27, 2011.
[26]李宏凱,「利用Kyropoulos方法生長藍寶石單晶之研究」,中華技術學院機電光研究所碩士論文,2006。
[27] Naotake Noda, Thermal stress, 2003.
[28]Daniel.C, “Materials for infrared window and domes:properties and performance”, 1999.
[29]J.F. Nye, “Physical properties of crystals: their representation by tensors and matrices”, 1957.
[30]T.M. Regan, “Neutron irradiation of sapphire for compressive strengthening. II. Physical properties changes”, Journal of Nuclear Materials, Vol. 300, pp. 47–56, 2002.
[31] M.F. Modest, Radiative Heat Transfer, 2003.
[32]M.H. Tavakoli and H. Wilke, “Numerical study of heat transport and fluid flow of melt and as during the seeding process of sapphire Czochralski crystal growth”, Crystal Growth Design, Vol. 7, pp. 644-651, 2007.
[33]M.H. Tavakoli, H. Wilke, “Numerical study of heat transport and fluid flow during different stages of sapphire Czochralski crystal growth”, Journal of Crystal Growth, Vol.310, pp. 3107-3112, 2008.
[34]C.W. Lu, “Effects of RF coil position on the transport processes during the stages of sapphire Czochralski crystal growth”, Journal of Crystal Growth, Vol. 312, pp.1074-1079, 2010.
[35]A.E. Kokh, V.A. Vlezko, and K.A. Kokh, “Control over the Symmetry of the Heat Field in the Station for Growing LBO Crystals by the Kyropoulos Method”, Instruments and Experimental Techniques, Vol. 52, pp. 747-751, 2009.
[36]R H Knibbs, “The measurement of thermal expansion coefficient of tungsten at elevated temperatures” Journal of Scientific Instruments, Vol. 2, pp. 515-517, 1969
指導教授 陳志臣(Jyh- Chen Chen) 審核日期 2012-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明