博碩士論文 943403031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.133.119.247
姓名 莊政霖(Cheng-Lin Chuang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 n型矽(100)表面在塗佈奈米銀後於含過氧化氫之氟化銨水溶液中的暗室蝕刻行為
(n-Si (100) Coated with Sparse Ag Nano-Particles Under Dark Etching in Aqueous NH4F with the Aid of H2O2)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文之內容主要探討奈米銀顆粒塗佈於n-型(100)單晶矽上,在不照光的條件下利用不同濃度之氟化銨和過氧化氫的混合溶液,經化學蝕刻後控制其孔洞形貌特性研究。研究發現蝕刻液加入的過氧化氫濃度越高(1 M ~ 5 M)會使得OCP之氧化還原電位往正電位移動,且高濃度的蝕刻液(11 M NH4F )其電位比低濃度蝕刻液(1 M NH4F)來的低,另外SEM結果顯示利用化學蝕刻法在1 M NH4F + 5 M H2O2混合蝕刻液中蝕刻五小時,可將塗佈奈米銀顆粒的矽晶表面蝕刻出直徑約1.5 ~ 3.1μm、深度約可達15 ~ 20μm(孔璧上有100 ~ 150 nm的奈米孔)的多孔矽,相較於在11 M NH4F + 5 M H2O2系統下只能發現淺孔洞;進一步利用XPS分析確認表面為矽與二氧化矽的化學鍵結分別在99.3 eV 和103.4 eV,同時藉由交流阻抗量測法可發現Nyquist圖中有兩個明顯的容抗頻譜分別在高頻與低頻產生,在頻率相角圖也可發現在高頻和低頻分別出現兩個時間常數的變化分別代表氧化層的容抗頻譜與矽腐蝕的容抗頻譜訊號。
摘要(英) Single crystalline n-Si (100) previously coated with sparse silver nano-particles were immersed in various solutions of ammonium fluoride and hydrogen peroxide to investigate and control their morphology of wet etching under no illumination. In the absence of H2O2, the open circuit potential (OCP) of the silicon was more active in the solutions of 11.0 M than 1.0 M NH4F. In the present of H2O2, the OCP of the silicon increased with increasing the concentration of H2O2 (from 1.0 to 5.0 M). Through examination by scanning electron microscopy (SEM), it exhibited porous surface consisting of micro-pores (1.5 ~ 3.1 μm in diameter with 15 ~ 20μm in depth) where nano-pores (100 ~ 150 nm in diameter) were embedded inside for the etching duration prolonged for 5 h in 1 M NH4F + 5 M H2O2. In contrast, only a few shallow pores on the Si (100) surface could be formed after the etching conducted in 11.0 M NH4F + 5.0 M H2O2. By checking the surface chemical bonding of silicon and silica in the NH4F/H2O2 system shows two important points at 99.3 eV and 103.4 eV. The Nyquist plot for this system indicated two typical semicircles, in which the one in response to high frequencies revealed greater diameter and the other in response to low frequencies indicated smaller diameter. This mechanism could be reconfirmed to have two time constants by checking the plots of phase angle against the exerted frequencies, respectively indicating the generation of an oxide layer on the surface of the substrate and the occurrence of an etching reaction at the controlled interface.
關鍵字(中) ★ 多孔矽
★ 金屬輔助化學蝕刻
★ 氟化銨
關鍵字(英) ★ Porous silicon
★ Ammonium fluoride
★ Metal-assist etch
論文目次 目錄
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 前言 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 論文架構 3
第二章 文獻回顧 6
2.1 矽晶圓的微細加工 6
2.2 電化學蝕刻與其他矽晶圓蝕刻技術 6
2.3 矽的陽極溶解反應 8
2.4 電化學蝕刻製作奈微米多孔矽結構 11
2.5 半導體化學蝕刻的能帶理論 11
2.6 Mott-Schottky分析 13
2.7 能帶圖的建立 14
2.8 交流阻抗應用於矽蝕刻之相關文獻 15
2.9 在氧化還原電位下形成的多孔矽 15
2.10 金屬輔助蝕刻製作奈微米多孔矽結構 16
2.11 觸媒催化蝕刻與其他輔助蝕刻的應用 18
第三章 實驗方法與進行步驟 36
3.1 試片的選擇 36
3.2奈米銀顆粒配製 36
3.3蝕刻液的選擇 37
3.4實驗設備 37
3.5蝕刻條件與儀器分析 38
第四章 結果與討論 44
4.1 添加過氧化氫對於蝕刻溶液酸鹼值的影響 44
4.2 以化學還原法沉積奈米銀顆粒於Si(100)基材之SEM形貌觀察 45
4.3 氧化劑的影響 46
4.3.1 1 M NH4F 加入0 ~ 5 M H2O2蝕刻n-Si(100) 1 h的開路電位量測 46
4.3.2 1 M NH4F加入0 ~ 5 M H2O2蝕刻n-Si(100) 1 h的SEM表面形貌 47
4.3.3 11 M NH4F加入0 ~ 5 M H2O2蝕刻n-Si(100) 1 h的開路電位量測 48
4.3.4 11 M NH4F加入0 ~ 5 M H2O2蝕刻n-Si(100) 1 h的SEM表面形貌 49
4.4 不同蝕刻時間的影響 54
4.5 交流阻抗分析 58
4.5.1 Nyquist頻譜分析 58
4.5.2等效電路圖模擬 59
4.5.3 相角頻率圖 61
4.6 能帶解析 63
4.6.1 Mott-Schottky分析法 63
4.6.2 能帶圖分析 65
4.7 XPS解析 67
第五章 結論 98
第六章 未來展望 100
參考文獻 103
個人簡歷 109
參考文獻 [1] Uhlir, Bell Syst. Techn. J., 35 (1956) 333.
[2] V. Lehmann, and H. Foll, J. Electrochem. Soc., 137 (1990) 653.
[3] H. Ohji, P. T. J. Gennissen, P. J. French, and K. Tsutsumi, J. Micromech. Microeng., 10 (2000) 440.
[4] H. Ohji, P. J. Trimp, and P. J. French, Sens. Actuators A, 73 (1999) 95.
[5] J. A. Walker, “The future of MEMS in telecommunications networks, 10 (2000) R1.
[6] J.von Behren, L. Trubeskov, and P. M. Fauchet, Appl. Phys. Lett., 66 (1995) 1662.
[7] M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, and N. B. Wong, J. Phys. Chem. C, 112 (2008) 4444.
[8] Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, and U. Go‥sele, J. Phys. Chem., C, 114 (2010) 10683.
[9] V. A. Sivakov, G. Bro‥nstrup, B. Pecz, A. Berger, G. Z. Radnoczi, M. Krause, and S. H. Christiansen, J. Phys. Chem., C, 114 (2010) 3798.
[10] S. Bauer, J. G. Brunner, H. Jha, Y. Yasukawa, H. Asoh, S. Ono, H. Bohm, J. P. Spatz, and P. Schmuki, Electrochem. Commun. 12 (2010) 565.
[11] W. A. Badawy, R. M. El-Sherif, and S. A. Khalil, Electrochim. Acta, 55 (2010) 8563.
[12] F. Yang, K. Roodenko, K. Hinrichs, and J. Rappich, J. Micromech. Microeng., 17 (2007) S56.
[13] S. E. Bae and C. W. Lee, The Electrochemical Society, Inc., Abs. 6, 205th Meeting, (2004).
[14] M. Lublowz, H. J. Lewerenz, Electrochem. SolidSt., 10 (2007) C51.
[15] J. H. Ouyang, and X. S. Zhao, J. Appl. Phys., 93 (2003) 4315.
[16] D. R. Turner, J. Electrochem. Soc., 105 (1958) 402.
[17] D. R. Turner, U.S. Patent 4, 469, 554, (1984) 333.
[18] V. Lehmann, Mater.Lett., 28 (1996) 245.
[19] V. Lehmann, J. Electrochem. Soc., 137 (1990) 653.
[20] A. Janshoff, K. P. S. Dancil, C. Steinem, D. P. Greiner, V. S. Y. Lin, C. Gurtner, K. Mosteshariei, M. J. Sailor and M. R. Ghadiri, J. Am. Chem. Soc., 120 (1998) 12108.
[21] C. M. A. Ashruf, P. J. French, P. M. Sarro, R. Kazinczi, X. H. Xia, and J. J. Kelly, J. Micromech. Microeng., 10 (2000) 505.
[22] J. H. Wei and S. C. Lee, J. Electrochem. Soc., 144 (1997) 1870.
[23] W. Lang, Mater. Sci. Eng., R17 (1996) 1.
[24] V. Lehmann, J. Electrochem. Soc., 137 (1990) 653.
[25] H. Ohji, P. T. J. Gennissen, P. J. French, and K. Tsutsumi, J. Micromech. Microeng., 10 (2000) 440.
[26] H. Ohji, P. J. Trimp, and P. J. French, Sens. Actuators A, 73 (1999) 95.
[27] 張俊彥譯,半導體元件物理與製作技術,高立出版,民國八十九年。
[28] 吳浩青,李永舫編著,電化學動力學,科技圖書股份有限公司, 民國九十年。
[29] M. Tomkiewicz, J. Electrochem. Soc., 126 (1979) 2220.
[30] P. Schmuki, and H. Böhni, J. Electrochem. Soc., 142 (1995) 1705.
[31] P. J. Boddy, Surf. Sci., 13 (1969) 52.
[32] N. Koshida, M. Nagasu, K. Echizenya, and Y. Kiuchi, J. Electrochem. Soc., 133 (1986) 2283.
[33] P. C. Searson, and X. G. Zhang, J. Electrochem. Soc., 137 (1990) 2539.
[34] Y. J. Hwang, A. Boukai, and P. D. Yang, Nano Lett., 9 (2009) 410.
[35] V. Sivakov, G. Andra, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, Nano Lett., 9 (2009) 1549.
[36] B. H. Zhang, H. S. Wang, L. H. Lu, K. L. Ai, G. Zhang, and X. L. Cheng, Adv. Funct. Mater., 18 (2008) 2348.
[37] M. L. Zhang, C. Q. Yi, X. Fan, K. Q. Peng, N. B. Wong, M. S. Yang, R. Q. Zhang, and S. T. Lee, Appl. Phys. Lett., 92 (2008) 043116.
[38] D. Dimova Malinovska, M. Sendova Vassileva, N. Tzenov, and M. Kamenova, Thin Solid Films, 297 (1997) 9.
[39] X. Li, and P. W. Bohn, Appl. Phys. Lett., 77 (2000) 2572.
[40] R. Douani, T. Hadjersi, R. Boukherroub, L. Adour, and A. Manseri, Appl. Surf. Sci., 254 (2008) 7219.
[41] Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, Adv. Mater., 23 (2011) 285.
[42] Z. P. Huang, H. Fang, and J. Zhu, Adv. Mater., 19 (2007) 744.
[43] Z. P. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, and S. Senz, U. Gosele, Nano Lett., 8 (2008) 3046.
[44] K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, and S. T. Lee, J. Zhu, Adv. Funct. Mater., 6 (2006) 387.
[45] T. Takahagi, I. Nagai, A. Ishitani, and H. Kuroda, J. Appl. Phys., 64 (1988) 3516.
[46] H. Fukidome, T. Ohno, and M. Matsumura, J. Electrochem. Soc., 144 (1997) 679.
[47] D. Graf, M. Grundner, and R. Chulz, J. Vac. Sci. Technol. A7 (1989) 808.
[48] L. A. Jones, O. Yukseker, and D. F. Thomas, J. Vac. Sci. Technol., A14 (1996) 1505.
[49] D. R. Turner. J. Electrochem. Soc., 107 (1960) 810.
[50] K. Peng, A. Lu, R. Zhang, and S. T. Lee, Adv., Funct. Mater., 18 (2008) 3026.
[51] K. S. Nahm, Y. H. Seo, and H. J. Lee, J. Appl. Phys., 81 (1997) 2418.
[52] M. Matsumura, and H. Fukidome, J. Electrochem. Soc., 143 (1996) 2683.
[53] M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew and A. G. Cullis, Appl. Phy. Lett., 408 (1986).
[54] S. R. Morrison, Electrochemistry of Semiconductor and Oxidized Metal Electrodes, Plenum Press, New York, 1981.
[55] J. C. Lin, C. M. Lai, W. D. Jehng, K. L. Hsueh, S. L. Lee, J. Electrochem. Soc., 155 (2008) D436.
[56] R. M. El-Sherif, S. A. Khalil, W. A. Badawy, and J. Alloy. Compd., 509 (2011) 4122.
[57] W. S. Tait, K. A. Handrich, S. W. Tait, J. W. Martin, in ASTM STP 1118, J. R. Scully, D. Silverman, M. W. Kending, Editors, American Society for Testing and materials, Philadelphia, PA. (1993) 428.
[58] E. Bohe, J. R. Vilche, K. Jüttner, W. J. Lorenz, W. Paatsch, Electrochim. Acta, 34 (1989) 1443.
[59] R. M. El-Sherif, S. A. Khalil, and W. A. Badawy, J. Alloy. Compd., 509 (2011) 4122.
[60] P. C. Searson, and X. G. Zhang, J. Electrochem. Soc., 137 (1990) 2539.
[61] W. A. Badawy, R. M. El-Sherif, and S. A. Khalil, Electrochim. Acta, 55 (2010) 8563.
[62] M. Niwano, Y. Kondo, and Y. Kimura, J. Electrochem. Soc., 147 (2000) 1555.
[63] L. C. Chen, M. J. Chen, C. S. Lien, and C. C. Wan, J. Electrochem. Soc., 142 (1995) 170.
[64] P. Schmuki, and H. Böhni, J. Electrochem. Soc., 142 (1995) 1705.
[65] F. A. Harraz, T. Sakka, and Y. H. Ogata, Electrochim. Acta, 50 (2005) 5340.
[66] D. K. Rao, and J. Majhi, J. Phys. D: Appl. Phys., 18 (1985) 1627.
[67] V. Lehmann, J. Electrochem. Soc., 137 (1990) 653.
[68] W. Bensch and O. Helmer, J. Phys. Chem., 99 (1995) 3326.
[69] G. Hollinger and F. J. Himmpsel, Appl. Phys. Lett., 44 (1984) 93.
[70] H. Massoud, J. Appl. Phys., 63 (1988) 2000.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2012-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明