博碩士論文 993203007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.139.108.99
姓名 蕭喬遠(Chiao-yuan Hsiao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 尺寸效應對於圓環鍛粗加工變形行為之影響
(The size effect for ring upsetting forging)
相關論文
★ 中尺寸LED背光模組之實驗研究★ 利用有限元素法與反應曲面法探討 金屬成型問題之最佳化設計-行星路徑旋轉鍛造傘齒輪為例
★ 以反應曲面法進行行動電話卡勾之最佳化設計★ 以微分式內涵塑性理論分析材料受軸向循環負載之塑性行為
★ A1070在累進式背擠製下的機械性質與微結構之研究★ 超音波輔助沖壓加工之應用-剪切、引伸與等通彎角擠製
★ 應用多體動力學於具循環氣體負載之迴轉式壓縮機振動預測模型建立★ 以有限元素法與反應曲面法分析螺旋傘齒輪之旋轉鍛造最佳化設計
★ 超音波振動輔助鋁合金6061及低碳鋼S15C拉伸試驗之研究★ 旋轉鍛造螺旋齒輪製程分析
★ 等通道扭轉彎角擠製之有限元素法及反應曲面法分析★ 以有限元素法與反應曲面法分析增量式板金成形
★ 以有限元素法與反應曲面法分析螺旋傘齒輪之雙錐輥旋轉鍛造最佳化設計★ 以有限元素法與反應曲面法分析兩點增量成形
★ 引伸成形加工問題之有限元素分析★ 應用流函數法分析軸對稱熱擠製加工問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在塑性變形中圓環鍛粗為最常用來探討摩擦因子之方法,由Kunogi[1]文獻中發現其6:3:2(外徑:內徑:高度)為最常用之圓環比例,上述比例圓環稱之為標準圓環。故本文利用車削製作出標準圓環比例,不同尺寸大小的圓環試片來進行圓環鍛粗加工實驗,探討其圓環試片之實驗結果,針對試片尺寸的不同,其變形結果是否會因尺寸效應的存在而造成摩擦因子的變化為研究重點。
摘要(英) In plastic deformation, ring upsetting is the most common approach to study friction factors. In the research of Kunogi[1], 6:3:2(outer diameter: inner diameter: height) is considered the most commonly used scale of ring. Rings with the scale mentioned above are called standard rings. In this paper, we use turning to produce ring specimens with the standard scale and in different sizes to conduct ring upsetting experiments. From the experimental result of ring specimens, this paper aims at studying whether the deformation that results from the difference of sizes of specimens result due to the size effects caused by changes in the friction factor for research focus.
關鍵字(中) ★ 尺寸效應
★ 標準圓環
★ 摩擦
★ 鍛粗
關鍵字(英) ★ size effect
★ standard ring
★ upsetting
★ friction
論文目次 摘要 ......................................................... i
Abstract ..................................................... ii
誌謝 ....................................................... iii
目錄 ........................................................ iv
表目錄 ...................................................... vi
圖目錄 ..................................................... vii
第一章 緒論 .................................................. 1
1-1前言.................................................. 1
1-2文獻回顧 .............................................. 3
1-3 研究目的與動機 ...................................... 10
1-4 本文流程架構 ........................................ 11
第二章 實驗設備與詴片準備 ................................... 12
2-1 實驗設備 ............................................ 12
2-2 實驗方法 ............................................ 12
2-2-1 詴片規格與準備................................. 13
2-2-2 機械性質測詴-MTS 拉伸詴驗 ...................... 13
2-2-3 解釋實驗詴片代碼............................... 15
第三章 實驗步驟與量測過程 ................................... 17
3-1 鍛粗實驗條件 ........................................ 17
3-2 量測 ................................................ 18
3-2-1 CCD內徑變化量量測 ............................. 18
3-2-3 CCD內徑桶脹量量測 ............................. 19
第四章 結果與討論 ........................................... 21
4-1 尺寸效應-鍛粗實驗結果................................ 21
4-1-1 液態(機油)潤滑條件 ............................. 21
4-1-2 固態(鐵氟龍)潤滑條件 ........................... 21
4-2 內徑側向桶脹之量測結果............................... 22
4-3 摩擦因子 ............................................ 23
4-3-1 液態(機油)潤滑之條件 ........................... 23
4-3-2 固態(鐵氟龍)潤滑之條件 ......................... 23
4-4 單道次與多道次之結果比較 ............................. 23
4-4-1 力量與壓縮量之關係 ............................. 24
4-4-2 內徑變化率 .................................... 25
第五章 結論與未來研究方向 ................................... 27
5-1 結論 ................................................ 27
5-2 未來研究方向 ........................................ 27
參考文獻 .................................................... 29
附錄 ........................................................ 34
參考文獻 [1] Kunogi, M., "A new method of cold extrusion.", J. of the Scientific Research Institute, Vol.50, pp215-246, 1956.
[2] Male, A. T. and Cockcroft, M. G., " A method for the determination of the coefficient of friction of metals under conditions of bulk plastic deformation ", J. of the Inst. of Metals, Vol. 93, pp. 38-46, 1965.
[3] Baraya, G. L. and Parker, J., "Determination of the yield surfaces by notched strip specimens ", Int. J. Mech. Sci. 5, pp.353-363, 1963.
[4] Male, A.T. and Depierre, V., " The Validity of Mathematical Solutions for Determining Friction from the Ring Compression Test ", Journal of Lubrication Technology, pp.389-397, 1970.
[5] Lee, C.H. and Altan, T., "Influence of Flow Stress and Friction Upon Metal Flow in Upset Forging of Rings and Cylinders", Journal of Engineering for Industry, pp.775-782, 1972.
[6] Nellemann, Y., Bay, N., Wanheim, T., "Real area of contact and friction stress-the role of trapped lubricant. ", Wear 43, p.45, 1977.
[7] Schey, J.A. and Venner, T.R., "Shape Changes in the Upsetting of Slender Cylinders", Journal of Engineering for Industry, pp.79-83, 1982.
[8] Hsiang, S. H. and Huang, T. F., "Analysis of Deformation Behaviours in Upsetting Processes ", Proceedings of the 8th National Conference on Mechanical Engineering The Chinese Society of Mechanical Engineers, pp. 887-894, 1991.
[9] M. Geiger, U. Engel, S. Niederkom, M. Pfestorf, "Experimental investigation of contact phenomena in cold forging", ICFG plenary meeting, 1995.
[10] Hsu, T.C. and Lee, C.H., "Realistic Friction Modeling for Simple Upsetting", Journal of Society of Tribologists and Lubrication, pp.367 -373,1997.
[11] S. Y. Lin, "Analysis of the Dissimilar Interface Frictional Constraints During", The International Journal of Advanced Manufacturing Technology, Vol.13, No.9, pp.601-610, 1997.
[12] Sofuoglu H. and Rasty J.,"On the measurement of friction coefficient utilizing the ring compression test", Tribology International,Vol. 32, pp.327-335,1999.
[13] Dutton, R.E., Seetharaman, V., Goetz, R.I., and Semiatin, S.L., "Effect of flow softening on ring test calibration curves", Materials Science and Engineering, Vol. 270, pp.249-253,1999.
[14] Hu, Z.M. and Dean, T.A., " A study of surface topography, friction and lubricants in metalforming", International Journal of Machine Tools and Manufacture,Vol. 40, pp.1637-1649, 2000.
[15] Engel, U. and Eckstein, R., " Microforming-from basic research to its realization", Journal of Materials Processing Technology 125-126, pp.35-44, 2002.
[16]S.Malayappan and R.Narayanasamy, "Barrelling of aluminium. solid cylinders during cold upset forging with constraint at one end", International Journal of Material Science and Technology, Vol 19, pp 507-511,2003.
[17] Y.G. An, H. Vegter "Analytical and experimental study of frictional behavior in through-thickness compression test",Journal of Materials Processing Technology 160 ,pp. 148–155,2005.
[18] S. Malayappan and G. Esakkimuthu , "Barrelling of aluminium solid cylinders during cold upsetting with differential frictional conditions at the faces", The International Journal of Advanced Manufacturing Technology, Vol. 29, No.1-2, pp. 41-48, 2006.
[19] Yang, T.S., Hsu, Y.C., "Study on the bulging deformation of the porous metal in upsetting", Journal of Materials Processing Technology, pp.154-158, 2006.
[20] Sahin, M., Cetinarslan, C.S., Akata, H.E., "Effect of surface roughness on friction coefficients duringupsetting processes for different materials", Materials and Design, Vol. 28, pp.633-640, 2007.
[21] K. Manisekar ., R. Narayanasamy., "Effect of friction on barrelling in square and rectangular billets of aluminium during cold upset forging" , Materials and Design 28 ,pp.592–598,2007.
[22] Cetinarslan, C.S., "Effect of aspect ratio on barreling contour and variation of total surface area during upsetting of cylindrical specimen", Materials and Design , Vol. 28, pp.1907-1913, 2007.
[23] K. Baskaran, R. Narayanasamy., "Effect of various stress ratio parameters on cold upset forging of irregular shaped billets using graphite as lubricant under plane and triaxial stress state conditions",Materials and Design, Vol. 29 ,pp. 2089–2103,2008.
[24] Rao, J. B., Kamaluddin, S., Rao, J. A., Sarcar, M.M.M., Bhargava, N.R.M.R. "Deformation behavior of Al-4Cu-2Mg alloy during cold upset forging", Journal of Alloys and Compounds, Vol.471, pp.128-136, 2009.
[25] Xinghui Han, Lin Hua. "Effect of size of the cylindrical workpiece on the cold rotary-forging process",Materials and Design , Vol.30 ,pp. 2802–2812,2009.
[26] Linfa Peng , Xinmin Lai , Hye-Jin Lee , Jung-Han Song , Jun Ni. "Friction behavior modeling and analysis in micro/meso scale metal forming proce",Materials and Design,Vol. 31,pp. 1953–1961,2010.
[27] H.M.T. Khaleed , Z. Samad, A.R. Othman, M.A. Mujeebu, A.B. Abdullah, M.M. Zihad. "Work-piece optimization and thermal analysis for flash-less cold forging of AUV propeller hubs — FEM simulation and experiment "Journal of Manufacturing Processes ,Vol. 13 .pp. 41–49 ,2011.
[28] 葉哲宇,「以實驗方法建立圓環鍛粗加工的異向性摩擦模型及其驗證」,碩士論文,國立中央大學,中壢,2010年。
指導教授 葉維磬(Wei-Ching Yeh) 審核日期 2012-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明